Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 212368 by Spillover last updated on 12/Oct/24

Answered by MathematicalUser2357 last updated on 13/Oct/24

∞

$$\infty \\ $$

Commented by Ghisom last updated on 14/Oct/24

no

$$\mathrm{no} \\ $$

Commented by MathematicalUser2357 last updated on 04/Nov/24

Then calculate ∫_(−1) ^1 ln xdx???

$$\mathrm{Then}\:\mathrm{calculate}\:\int_{−\mathrm{1}} ^{\mathrm{1}} \mathrm{ln}\:{xdx}??? \\ $$

Commented by Ghisom last updated on 04/Nov/24

∫_(−1) ^1 ln x dx=[xln x −x]_(−1) ^1 =−2+πi  but here we have  ∫_(−1) ^1 ln x^2  ln (1−x^2 ) dx=  =16−π^2 −8ln 2 ≈.585218154431

$$\underset{−\mathrm{1}} {\overset{\mathrm{1}} {\int}}\mathrm{ln}\:{x}\:{dx}=\left[{x}\mathrm{ln}\:{x}\:−{x}\right]_{−\mathrm{1}} ^{\mathrm{1}} =−\mathrm{2}+\pi\mathrm{i} \\ $$$$\mathrm{but}\:\mathrm{here}\:\mathrm{we}\:\mathrm{have} \\ $$$$\underset{−\mathrm{1}} {\overset{\mathrm{1}} {\int}}\mathrm{ln}\:{x}^{\mathrm{2}} \:\mathrm{ln}\:\left(\mathrm{1}−{x}^{\mathrm{2}} \right)\:{dx}= \\ $$$$=\mathrm{16}−\pi^{\mathrm{2}} −\mathrm{8ln}\:\mathrm{2}\:\approx.\mathrm{585218154431} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com