Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 212341 by Spillover last updated on 10/Oct/24

Answered by Ghisom last updated on 10/Oct/24

∫_0 ^(π/4)  ((sin x +cos x)/(9+16sin 2x))dx=       [t=((4(√2))/5)cos (x+(π/4))]  =−(1/(20))∫_0 ^(4/5) (dt/(t^2 −1))=−(1/(40))[ln ∣((t−1)/(t+1))∣]_ =((ln 3)/(20))

$$\underset{\mathrm{0}} {\overset{\pi/\mathrm{4}} {\int}}\:\frac{\mathrm{sin}\:{x}\:+\mathrm{cos}\:{x}}{\mathrm{9}+\mathrm{16sin}\:\mathrm{2}{x}}{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\frac{\mathrm{4}\sqrt{\mathrm{2}}}{\mathrm{5}}\mathrm{cos}\:\left({x}+\frac{\pi}{\mathrm{4}}\right)\right] \\ $$$$=−\frac{\mathrm{1}}{\mathrm{20}}\underset{\mathrm{0}} {\overset{\mathrm{4}/\mathrm{5}} {\int}}\frac{{dt}}{{t}^{\mathrm{2}} −\mathrm{1}}=−\frac{\mathrm{1}}{\mathrm{40}}\left[\mathrm{ln}\:\mid\frac{{t}−\mathrm{1}}{{t}+\mathrm{1}}\mid\right]_{} =\frac{\mathrm{ln}\:\mathrm{3}}{\mathrm{20}} \\ $$

Commented by Spillover last updated on 12/Oct/24

great

$${great} \\ $$

Answered by MathematicalUser2357 last updated on 13/Oct/24

5.49306144335×10^(−2)

$$\mathrm{5}.\mathrm{49306144335}×\mathrm{10}^{−\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com