Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 212023 by Spillover last updated on 27/Sep/24

Answered by Frix last updated on 27/Sep/24

∫ (((x+1)tan x)/((1+tan x)^2 ))dx=  =(1/2)∫(x+1−(1/(1+sin 2x_([t=tan x]) ))−(x/(1+sin 2x_([by parts]) )))dx=  ...  =((x(x+1))/4)+(((x+1))/(2(1+tan x)))+(1/8)ln ((1+tan^2  x)/((1+tan x)^2 )) +C  ∫_0 ^(π/4)  (((x+1)tan x)/((1+tan x)^2 ))dx=(π^2 /(64))+(π/8)−(1/4)−((ln 2)/8)    [∫_0 ^(π/2)  (((x+1)tan x)/((1+tan x)^2 ))dx=(π^2 /(16))+(π/8)−(1/2)]

$$\int\:\frac{\left({x}+\mathrm{1}\right)\mathrm{tan}\:{x}}{\left(\mathrm{1}+\mathrm{tan}\:{x}\right)^{\mathrm{2}} }{dx}= \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int\left({x}+\mathrm{1}−\frac{\mathrm{1}}{\underset{\left[{t}=\mathrm{tan}\:{x}\right]} {\underbrace{\mathrm{1}+\mathrm{sin}\:\mathrm{2}{x}}}}−\frac{{x}}{\underset{\left[\mathrm{by}\:\mathrm{parts}\right]} {\underbrace{\mathrm{1}+\mathrm{sin}\:\mathrm{2}{x}}}}\right){dx}= \\ $$$$... \\ $$$$=\frac{{x}\left({x}+\mathrm{1}\right)}{\mathrm{4}}+\frac{\left({x}+\mathrm{1}\right)}{\mathrm{2}\left(\mathrm{1}+\mathrm{tan}\:{x}\right)}+\frac{\mathrm{1}}{\mathrm{8}}\mathrm{ln}\:\frac{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:{x}}{\left(\mathrm{1}+\mathrm{tan}\:{x}\right)^{\mathrm{2}} }\:+{C} \\ $$$$\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{4}}} {\int}}\:\frac{\left({x}+\mathrm{1}\right)\mathrm{tan}\:{x}}{\left(\mathrm{1}+\mathrm{tan}\:{x}\right)^{\mathrm{2}} }{dx}=\frac{\pi^{\mathrm{2}} }{\mathrm{64}}+\frac{\pi}{\mathrm{8}}−\frac{\mathrm{1}}{\mathrm{4}}−\frac{\mathrm{ln}\:\mathrm{2}}{\mathrm{8}} \\ $$$$ \\ $$$$\left[\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\:\frac{\left({x}+\mathrm{1}\right)\mathrm{tan}\:{x}}{\left(\mathrm{1}+\mathrm{tan}\:{x}\right)^{\mathrm{2}} }{dx}=\frac{\pi^{\mathrm{2}} }{\mathrm{16}}+\frac{\pi}{\mathrm{8}}−\frac{\mathrm{1}}{\mathrm{2}}\right] \\ $$

Commented by Spillover last updated on 27/Sep/24

correct

$${correct} \\ $$

Answered by Spillover last updated on 27/Sep/24

Answered by Spillover last updated on 27/Sep/24

Terms of Service

Privacy Policy

Contact: info@tinkutara.com