Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 211920 by Spillover last updated on 24/Sep/24

Answered by aleks041103 last updated on 24/Sep/24

(√(x(√(x^2 (√(x^3 (√(...)))))) ))= x^(1/2) x^(2/4) x^(3/8) ...x^(n/2^n ) ... =  = x∧(Σ_(n=1) ^∞ n2^(−n) )  Σ_(n=1) ^∞ nr^n =rΣ_(n=0) ^∞ nr^(n−1) =r(d/dr)(Σ_(n=0) ^∞ r^n )=  =r(d/dr)((1/(1−r)))=(r/((1−r)^2 ))  ⇒Σ_(n=1) ^∞ n2^(−n)  = ((1/2)/((1−1/2)^2 ))=(1/(2.(1/4)))=2  ⇒(√(x(√(x^2 (√(x^3 (√(...)))))) ))= x^2   −−−−−−−−−−−−−−  ((a−b((a−b((a−b...))^(1/3) ))^(1/3) ))^(1/3) =x  ⇒((a−bx))^(1/3) =x  x^3 +bx−a=0  x^3 +18x−215=0 ⇒ x=5  −−−−−−−−−−−−−−  Ans. = log_(√5) ((((5+5(√5))^2 )/((6+2(√5))5)))=  =2log_5 (((5(1+(√5))^2 )/(6+2(√5))))=2  ⇒Ans.=2

$$\sqrt{{x}\sqrt{{x}^{\mathrm{2}} \sqrt{{x}^{\mathrm{3}} \sqrt{...}}}\:}=\:{x}^{\mathrm{1}/\mathrm{2}} {x}^{\mathrm{2}/\mathrm{4}} {x}^{\mathrm{3}/\mathrm{8}} ...{x}^{{n}/\mathrm{2}^{{n}} } ...\:= \\ $$$$=\:{x}\wedge\left(\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{n}\mathrm{2}^{−{n}} \right) \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{nr}^{{n}} ={r}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{nr}^{{n}−\mathrm{1}} ={r}\frac{{d}}{{dr}}\left(\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{r}^{{n}} \right)= \\ $$$$={r}\frac{{d}}{{dr}}\left(\frac{\mathrm{1}}{\mathrm{1}−{r}}\right)=\frac{{r}}{\left(\mathrm{1}−{r}\right)^{\mathrm{2}} } \\ $$$$\Rightarrow\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{n}\mathrm{2}^{−{n}} \:=\:\frac{\mathrm{1}/\mathrm{2}}{\left(\mathrm{1}−\mathrm{1}/\mathrm{2}\right)^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{2}.\frac{\mathrm{1}}{\mathrm{4}}}=\mathrm{2} \\ $$$$\Rightarrow\sqrt{{x}\sqrt{{x}^{\mathrm{2}} \sqrt{{x}^{\mathrm{3}} \sqrt{...}}}\:}=\:{x}^{\mathrm{2}} \\ $$$$−−−−−−−−−−−−−− \\ $$$$\sqrt[{\mathrm{3}}]{{a}−{b}\sqrt[{\mathrm{3}}]{{a}−{b}\sqrt[{\mathrm{3}}]{{a}−{b}...}}}={x} \\ $$$$\Rightarrow\sqrt[{\mathrm{3}}]{{a}−{bx}}={x} \\ $$$${x}^{\mathrm{3}} +{bx}−{a}=\mathrm{0} \\ $$$${x}^{\mathrm{3}} +\mathrm{18}{x}−\mathrm{215}=\mathrm{0}\:\Rightarrow\:{x}=\mathrm{5} \\ $$$$−−−−−−−−−−−−−− \\ $$$${Ans}.\:=\:{log}_{\sqrt{\mathrm{5}}} \left(\frac{\left(\mathrm{5}+\mathrm{5}\sqrt{\mathrm{5}}\right)^{\mathrm{2}} }{\left(\mathrm{6}+\mathrm{2}\sqrt{\mathrm{5}}\right)\mathrm{5}}\right)= \\ $$$$=\mathrm{2}{log}_{\mathrm{5}} \left(\frac{\mathrm{5}\left(\mathrm{1}+\sqrt{\mathrm{5}}\right)^{\mathrm{2}} }{\mathrm{6}+\mathrm{2}\sqrt{\mathrm{5}}}\right)=\mathrm{2} \\ $$$$\Rightarrow{Ans}.=\mathrm{2} \\ $$

Commented by Spillover last updated on 25/Sep/24

great.thanks

$${great}.{thanks} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com