Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 211418 by peter frank last updated on 08/Sep/24

Answered by Spillover last updated on 09/Sep/24

Answered by Spillover last updated on 10/Sep/24

Particle  A   Horizontal distance, x_A =U_A tcos α  Vertical distance ,y_A =h+U_A tsin α−(1/2)gt^2   Particle  B   Horizontal distance, x_B =2h+U_B tcos β  Vertical distance ,y_B =h+U_B tsin β−(1/2)gt^2   Collision   x_A =U_A tcos α= x_B =2h+U_B tcos β  t=((2h)/(U_A cos α−U_B cos β))  h+U_A tsin α−(1/2)gt^2 =h+U_B tsin β−(1/2)gt^2   h=t(U_B sin B−U_A sin α)  h=((2h(U_B sin B−U_A sin α))/(U_A cos α−U_B cos β)).  U_A cos α−U_B cos β=(U_B sin B−U_A sin α)  (U_A /U_B )=(((cosα+2sin α))/(=(cos β+2sin β)))

$${Particle}\:\:{A}\: \\ $$$${Horizontal}\:{distance},\:{x}_{{A}} ={U}_{{A}} {t}\mathrm{cos}\:\alpha \\ $$$${Vertical}\:{distance}\:,{y}_{{A}} ={h}+{U}_{{A}} {t}\mathrm{sin}\:\alpha−\frac{\mathrm{1}}{\mathrm{2}}{gt}^{\mathrm{2}} \\ $$$${Particle}\:\:{B}\: \\ $$$${Horizontal}\:{distance},\:{x}_{{B}} =\mathrm{2}{h}+{U}_{{B}} {t}\mathrm{cos}\:\beta \\ $$$${Vertical}\:{distance}\:,{y}_{{B}} ={h}+{U}_{{B}} {t}\mathrm{sin}\:\beta−\frac{\mathrm{1}}{\mathrm{2}}{gt}^{\mathrm{2}} \\ $$$${Collision} \\ $$$$\:{x}_{{A}} ={U}_{{A}} {t}\mathrm{cos}\:\alpha=\:{x}_{{B}} =\mathrm{2}{h}+{U}_{{B}} {t}\mathrm{cos}\:\beta \\ $$$${t}=\frac{\mathrm{2}{h}}{{U}_{{A}} \mathrm{cos}\:\alpha−{U}_{{B}} \mathrm{cos}\:\beta} \\ $$$${h}+{U}_{{A}} {t}\mathrm{sin}\:\alpha−\frac{\mathrm{1}}{\mathrm{2}}{gt}^{\mathrm{2}} ={h}+{U}_{{B}} {t}\mathrm{sin}\:\beta−\frac{\mathrm{1}}{\mathrm{2}}{gt}^{\mathrm{2}} \\ $$$${h}={t}\left({U}_{{B}} \mathrm{sin}\:{B}−{U}_{{A}} \mathrm{sin}\:\alpha\right) \\ $$$${h}=\frac{\mathrm{2}{h}\left({U}_{{B}} \mathrm{sin}\:{B}−{U}_{{A}} \mathrm{sin}\:\alpha\right)}{{U}_{{A}} \mathrm{cos}\:\alpha−{U}_{{B}} \mathrm{cos}\:\beta}. \\ $$$${U}_{{A}} \mathrm{cos}\:\alpha−{U}_{{B}} \mathrm{cos}\:\beta=\left({U}_{{B}} \mathrm{sin}\:{B}−{U}_{{A}} \mathrm{sin}\:\alpha\right) \\ $$$$\frac{{U}_{{A}} }{{U}_{{B}} }=\frac{\left(\mathrm{co}{s}\alpha+\mathrm{2sin}\:\alpha\right)}{=\left(\mathrm{cos}\:\beta+\mathrm{2sin}\:\beta\right)} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com