Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 211105 by peter frank last updated on 28/Aug/24

Answered by mm1342 last updated on 28/Aug/24

z=z_1 z_2 =cos((12π)/5)+isin((12π)/5)  =cos((2π)/5)+isin((2π)/5)=e^(((2π)/5)i ) ⇒z^5 =e^(2πi) =1  ⇒z^5 −1=0  ✓

$${z}={z}_{\mathrm{1}} {z}_{\mathrm{2}} ={cos}\frac{\mathrm{12}\pi}{\mathrm{5}}+{isin}\frac{\mathrm{12}\pi}{\mathrm{5}} \\ $$$$={cos}\frac{\mathrm{2}\pi}{\mathrm{5}}+{isin}\frac{\mathrm{2}\pi}{\mathrm{5}}={e}^{\frac{\mathrm{2}\pi}{\mathrm{5}}{i}\:} \Rightarrow{z}^{\mathrm{5}} ={e}^{\mathrm{2}\pi{i}} =\mathrm{1} \\ $$$$\Rightarrow{z}^{\mathrm{5}} −\mathrm{1}=\mathrm{0}\:\:\checkmark \\ $$$$ \\ $$

Commented by peter frank last updated on 28/Aug/24

thank you

$$\mathrm{thank}\:\mathrm{you} \\ $$

Answered by Frix last updated on 28/Aug/24

z^5 =e^(2πni) ; n∈Z  z_n =e^(((2πn)/5)i)   ⇔  Z_5 ={z_n =e^(((2πn)/5)i) ∣n∈Z}            [Further we notice e^(((2πn)/5)i) =e^(((2(n+5k)π)/5)i) ; k∈Z]    z_m z_n =e^(((2πm)/5)i) e^(((2πn)/5)i) =e^(((2π(m+n))/5)i)   m, n ∈Z ⇒ z_m , z_n  ∈Z_5   m+n∈Z ⇒ z_(m+n) ∈Z_5     z_1 =e^(((4π)/5)i) =z_2 ∈Z_5      [4=2n ⇔ n=2]  z_2 =e^(((8π)/5)i) =z_4 ∈Z_5      [8=2n ⇔ n=4]  z_1 z_2 =e^(((12π)/5)i) =z_6 ∈Z_5      [12=2n ⇔ n=6]            [12=2(n+5k) ⇔ n=1∧k=1]

$${z}^{\mathrm{5}} =\mathrm{e}^{\mathrm{2}\pi{n}\mathrm{i}} ;\:{n}\in\mathbb{Z} \\ $$$${z}_{{n}} =\mathrm{e}^{\frac{\mathrm{2}\pi{n}}{\mathrm{5}}\mathrm{i}} \\ $$$$\Leftrightarrow \\ $$$${Z}_{\mathrm{5}} =\left\{{z}_{{n}} =\mathrm{e}^{\frac{\mathrm{2}\pi{n}}{\mathrm{5}}\mathrm{i}} \mid{n}\in\mathbb{Z}\right\} \\ $$$$\:\:\:\:\:\:\:\:\:\:\left[\mathrm{Further}\:\mathrm{we}\:\mathrm{notice}\:\mathrm{e}^{\frac{\mathrm{2}\pi{n}}{\mathrm{5}}\mathrm{i}} =\mathrm{e}^{\frac{\mathrm{2}\left({n}+\mathrm{5}{k}\right)\pi}{\mathrm{5}}\mathrm{i}} ;\:{k}\in\mathbb{Z}\right] \\ $$$$ \\ $$$${z}_{{m}} {z}_{{n}} =\mathrm{e}^{\frac{\mathrm{2}\pi{m}}{\mathrm{5}}\mathrm{i}} \mathrm{e}^{\frac{\mathrm{2}\pi{n}}{\mathrm{5}}\mathrm{i}} =\mathrm{e}^{\frac{\mathrm{2}\pi\left({m}+{n}\right)}{\mathrm{5}}\mathrm{i}} \\ $$$${m},\:{n}\:\in\mathbb{Z}\:\Rightarrow\:{z}_{{m}} ,\:{z}_{{n}} \:\in{Z}_{\mathrm{5}} \\ $$$${m}+{n}\in\mathbb{Z}\:\Rightarrow\:{z}_{{m}+{n}} \in{Z}_{\mathrm{5}} \\ $$$$ \\ $$$$\mathrm{z}_{\mathrm{1}} =\mathrm{e}^{\frac{\mathrm{4}\pi}{\mathrm{5}}\mathrm{i}} ={z}_{\mathrm{2}} \in{Z}_{\mathrm{5}} \:\:\:\:\:\left[\mathrm{4}=\mathrm{2}{n}\:\Leftrightarrow\:{n}=\mathrm{2}\right] \\ $$$$\mathrm{z}_{\mathrm{2}} =\mathrm{e}^{\frac{\mathrm{8}\pi}{\mathrm{5}}\mathrm{i}} ={z}_{\mathrm{4}} \in{Z}_{\mathrm{5}} \:\:\:\:\:\left[\mathrm{8}=\mathrm{2}{n}\:\Leftrightarrow\:{n}=\mathrm{4}\right] \\ $$$$\mathrm{z}_{\mathrm{1}} \mathrm{z}_{\mathrm{2}} =\mathrm{e}^{\frac{\mathrm{12}\pi}{\mathrm{5}}\mathrm{i}} ={z}_{\mathrm{6}} \in{Z}_{\mathrm{5}} \:\:\:\:\:\left[\mathrm{12}=\mathrm{2}{n}\:\Leftrightarrow\:{n}=\mathrm{6}\right] \\ $$$$\:\:\:\:\:\:\:\:\:\:\left[\mathrm{12}=\mathrm{2}\left({n}+\mathrm{5}{k}\right)\:\Leftrightarrow\:{n}=\mathrm{1}\wedge{k}=\mathrm{1}\right] \\ $$

Commented by peter frank last updated on 28/Aug/24

thank you

$$\mathrm{thank}\:\mathrm{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com