Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 211079 by Ari last updated on 27/Aug/24

Answered by A5T last updated on 27/Aug/24

Suppose DB⊥AC  A_2 =((DB×AB)/2)=63;A_1 =((EA×AB)/2)=144  (A_2 /A_1 )=((63)/(144))=((DB)/(EA))=(7/(16))⇒(A_3 /(A_1 +A_2 +A_3 ))=((7/(16)))^2   ⇒A_3 =49u^2

$${Suppose}\:{DB}\bot{AC} \\ $$$${A}_{\mathrm{2}} =\frac{{DB}×{AB}}{\mathrm{2}}=\mathrm{63};{A}_{\mathrm{1}} =\frac{{EA}×{AB}}{\mathrm{2}}=\mathrm{144} \\ $$$$\frac{{A}_{\mathrm{2}} }{{A}_{\mathrm{1}} }=\frac{\mathrm{63}}{\mathrm{144}}=\frac{{DB}}{{EA}}=\frac{\mathrm{7}}{\mathrm{16}}\Rightarrow\frac{{A}_{\mathrm{3}} }{{A}_{\mathrm{1}} +{A}_{\mathrm{2}} +{A}_{\mathrm{3}} }=\left(\frac{\mathrm{7}}{\mathrm{16}}\right)^{\mathrm{2}} \\ $$$$\Rightarrow{A}_{\mathrm{3}} =\mathrm{49}{u}^{\mathrm{2}} \\ $$

Commented by Ari last updated on 27/Aug/24

but DB is not given perpendicular to AC

$${but}\:{DB}\:{is}\:{not}\:{given}\:{perpendicular}\:{to}\:{AC} \\ $$$$ \\ $$

Commented by A5T last updated on 27/Aug/24

Then it cannot be unique or it won′t be   dependent on it being perpendicular

$${Then}\:{it}\:{cannot}\:{be}\:{unique}\:{or}\:{it}\:{won}'{t}\:{be}\: \\ $$$${dependent}\:{on}\:{it}\:{being}\:{perpendicular} \\ $$

Commented by Ari last updated on 27/Aug/24

Ok,you are right !

$${Ok},{you}\:{are}\:{right}\:! \\ $$

Commented by mm1342 last updated on 27/Aug/24

if   △_1 ≈ △_2  ⇒ (s_1 /s_2 )=k^2   ⇒(A_3 /(A_1 +A_2 +A_3 ))=(((DB)/(EA)))^2 =((49)/(256))  ⇒A_3 =49 ✓

$${if}\:\:\:\bigtriangleup_{\mathrm{1}} \approx\:\bigtriangleup_{\mathrm{2}} \:\Rightarrow\:\frac{{s}_{\mathrm{1}} }{{s}_{\mathrm{2}} }={k}^{\mathrm{2}} \\ $$$$\Rightarrow\frac{{A}_{\mathrm{3}} }{{A}_{\mathrm{1}} +{A}_{\mathrm{2}} +{A}_{\mathrm{3}} }=\left(\frac{{DB}}{{EA}}\right)^{\mathrm{2}} =\frac{\mathrm{49}}{\mathrm{256}} \\ $$$$\Rightarrow{A}_{\mathrm{3}} =\mathrm{49}\:\checkmark \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com