Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 211008 by mnjuly1970 last updated on 26/Aug/24

Commented by Frix last updated on 26/Aug/24

y=αx+p?

$${y}=\alpha{x}+{p}? \\ $$

Commented by mnjuly1970 last updated on 26/Aug/24

  y=αx + β  ⋛

$$\:\:{y}=\alpha{x}\:+\:\beta\:\:\underline{\underbrace{\lesseqgtr}} \\ $$

Commented by Frix last updated on 26/Aug/24

I=∫_(−(π/2)) ^(π/2) (sin^2  x −2βsin x −2αxsin x +(αx+β)^2 )dx=  =[((x−cos x sin x)/2)+2βcos x +2α(xcos x −sin x +(((αx+β)^3 )/(3α))]_(−(π/2)) ^(π/2) =  =((α^2 π^3 )/(12))−4α+β^2 π+(π/2)  The minimum occurs at α=((24)/π^3 )∧β=0  min I =((π^4 −96)/(2π^3 ))  y=αx+β=((24x)/π^3 )

$${I}=\underset{−\frac{\pi}{\mathrm{2}}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\left(\mathrm{sin}^{\mathrm{2}} \:{x}\:−\mathrm{2}\beta\mathrm{sin}\:{x}\:−\mathrm{2}\alpha{x}\mathrm{sin}\:{x}\:+\left(\alpha{x}+\beta\right)^{\mathrm{2}} \right){dx}= \\ $$$$=\left[\frac{{x}−\mathrm{cos}\:{x}\:\mathrm{sin}\:{x}}{\mathrm{2}}+\mathrm{2}\beta\mathrm{cos}\:{x}\:+\mathrm{2}\alpha\left({x}\mathrm{cos}\:{x}\:−\mathrm{sin}\:{x}\:+\frac{\left(\alpha{x}+\beta\right)^{\mathrm{3}} }{\mathrm{3}\alpha}\right]_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} =\right. \\ $$$$=\frac{\alpha^{\mathrm{2}} \pi^{\mathrm{3}} }{\mathrm{12}}−\mathrm{4}\alpha+\beta^{\mathrm{2}} \pi+\frac{\pi}{\mathrm{2}} \\ $$$$\mathrm{The}\:\mathrm{minimum}\:\mathrm{occurs}\:\mathrm{at}\:\alpha=\frac{\mathrm{24}}{\pi^{\mathrm{3}} }\wedge\beta=\mathrm{0} \\ $$$$\mathrm{min}\:{I}\:=\frac{\pi^{\mathrm{4}} −\mathrm{96}}{\mathrm{2}\pi^{\mathrm{3}} } \\ $$$${y}=\alpha{x}+\beta=\frac{\mathrm{24}{x}}{\pi^{\mathrm{3}} } \\ $$

Commented by mnjuly1970 last updated on 26/Aug/24

grateful sir Frix

$${grateful}\:{sir}\:{Frix} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com