Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 210875 by peter frank last updated on 20/Aug/24

Answered by mahdipoor last updated on 20/Aug/24

get time is h : m & vertical line is refrence  angle huur_hand : ((360)/(12))h+((360)/(12×60))m  angle minute_hand : ((360)/(60))m  ⇒∠=∣h−m∣=∣30h−5.5m∣ or 360−∣30h−5.5m∣  for example: 5:45  ⇒∣30×5−5.5×45∣=97.5 deg=1.702 rad

$${get}\:{time}\:{is}\:{h}\::\:{m}\:\&\:{vertical}\:{line}\:{is}\:{refrence} \\ $$$${angle}\:{huur\_hand}\::\:\frac{\mathrm{360}}{\mathrm{12}}{h}+\frac{\mathrm{360}}{\mathrm{12}×\mathrm{60}}{m} \\ $$$${angle}\:{minute\_hand}\::\:\frac{\mathrm{360}}{\mathrm{60}}{m} \\ $$$$\Rightarrow\angle=\mid{h}−{m}\mid=\mid\mathrm{30}{h}−\mathrm{5}.\mathrm{5}{m}\mid\:{or}\:\mathrm{360}−\mid\mathrm{30}{h}−\mathrm{5}.\mathrm{5}{m}\mid \\ $$$${for}\:{example}:\:\mathrm{5}:\mathrm{45} \\ $$$$\Rightarrow\mid\mathrm{30}×\mathrm{5}−\mathrm{5}.\mathrm{5}×\mathrm{45}\mid=\mathrm{97}.\mathrm{5}\:{deg}=\mathrm{1}.\mathrm{702}\:{rad} \\ $$$$ \\ $$

Answered by efronzo1 last updated on 20/Aug/24

  θ = ((∣60.5−11.45∣^o )/2) = 97.5^o

$$\:\:\theta\:=\:\frac{\mid\mathrm{60}.\mathrm{5}−\mathrm{11}.\mathrm{45}\mid^{\mathrm{o}} }{\mathrm{2}}\:=\:\mathrm{97}.\mathrm{5}^{\mathrm{o}} \\ $$

Answered by mr W last updated on 20/Aug/24

assume that the hands of the clock   move continuously.  at time h:00  θ_h =(h/(12))×360=30h (°)  θ_m =0°  at time h:m  θ_h =30(h+(m/(60)))=30h+(m/2) (°)  θ_m =(m/(60))×360=6m (°)  Δθ=θ_m −θ_h =((11m)/2)−30h (°)  example at time 5:45  Δθ=((11×45)/2)−30×5=97.5 (°)  example at time 10:12  Δθ=((11×12)/2)−30×10=−234 (°)=126°

$${assume}\:{that}\:{the}\:{hands}\:{of}\:{the}\:{clock}\: \\ $$$${move}\:\underline{{continuously}}. \\ $$$${at}\:{time}\:{h}:\mathrm{00} \\ $$$$\theta_{{h}} =\frac{{h}}{\mathrm{12}}×\mathrm{360}=\mathrm{30}{h}\:\left(°\right) \\ $$$$\theta_{{m}} =\mathrm{0}° \\ $$$${at}\:{time}\:{h}:{m} \\ $$$$\theta_{{h}} =\mathrm{30}\left({h}+\frac{{m}}{\mathrm{60}}\right)=\mathrm{30}{h}+\frac{{m}}{\mathrm{2}}\:\left(°\right) \\ $$$$\theta_{{m}} =\frac{{m}}{\mathrm{60}}×\mathrm{360}=\mathrm{6}{m}\:\left(°\right) \\ $$$$\Delta\theta=\theta_{{m}} −\theta_{{h}} =\frac{\mathrm{11}{m}}{\mathrm{2}}−\mathrm{30}{h}\:\left(°\right) \\ $$$${example}\:{at}\:{time}\:\mathrm{5}:\mathrm{45} \\ $$$$\Delta\theta=\frac{\mathrm{11}×\mathrm{45}}{\mathrm{2}}−\mathrm{30}×\mathrm{5}=\mathrm{97}.\mathrm{5}\:\left(°\right) \\ $$$${example}\:{at}\:{time}\:\mathrm{10}:\mathrm{12} \\ $$$$\Delta\theta=\frac{\mathrm{11}×\mathrm{12}}{\mathrm{2}}−\mathrm{30}×\mathrm{10}=−\mathrm{234}\:\left(°\right)=\mathrm{126}° \\ $$

Commented by peter frank last updated on 22/Aug/24

thank you

$$\mathrm{thank}\:\mathrm{you} \\ $$

Answered by mr W last updated on 20/Aug/24

Commented by mr W last updated on 21/Aug/24

now let′s look at a real clock.  on a mechanically driven clock the  hands don′t move continuously.   they can only have 60 possible  positions around the circle. for  example from 3:00 to 3:12 the hour  hand remains in the same position  as at 3:00. the picture above shows  e.g. the time 3:07:03.  in following picture the red hour  hand and red minute hand show  the time 5:45. the angle between  them is 17×6=102° (≠97.5°).

$${now}\:{let}'{s}\:{look}\:{at}\:{a}\:{real}\:{clock}. \\ $$$${on}\:{a}\:{mechanically}\:{driven}\:{clock}\:{the} \\ $$$${hands}\:{don}'{t}\:{move}\:{continuously}.\: \\ $$$${they}\:{can}\:{only}\:{have}\:\mathrm{60}\:{possible} \\ $$$${positions}\:{around}\:{the}\:{circle}.\:{for} \\ $$$${example}\:{from}\:\mathrm{3}:\mathrm{00}\:{to}\:\mathrm{3}:\mathrm{12}\:{the}\:{hour} \\ $$$${hand}\:{remains}\:{in}\:{the}\:{same}\:{position} \\ $$$${as}\:{at}\:\mathrm{3}:\mathrm{00}.\:{the}\:{picture}\:{above}\:{shows} \\ $$$${e}.{g}.\:{the}\:{time}\:\mathrm{3}:\mathrm{07}:\mathrm{03}. \\ $$$${in}\:{following}\:{picture}\:{the}\:{red}\:{hour} \\ $$$${hand}\:{and}\:{red}\:{minute}\:{hand}\:{show} \\ $$$${the}\:{time}\:\mathrm{5}:\mathrm{45}.\:{the}\:{angle}\:{between} \\ $$$${them}\:{is}\:\mathrm{17}×\mathrm{6}=\mathrm{102}°\:\left(\neq\mathrm{97}.\mathrm{5}°\right). \\ $$

Commented by mr W last updated on 20/Aug/24

Commented by mr W last updated on 20/Aug/24

following picture shows the time  10:12. the angle between the minute  hand and hour hand is  21×6=126 °

$${following}\:{picture}\:{shows}\:{the}\:{time} \\ $$$$\mathrm{10}:\mathrm{12}.\:{the}\:{angle}\:{between}\:{the}\:{minute} \\ $$$${hand}\:{and}\:{hour}\:{hand}\:{is} \\ $$$$\mathrm{21}×\mathrm{6}=\mathrm{126}\:° \\ $$

Commented by mr W last updated on 20/Aug/24

Terms of Service

Privacy Policy

Contact: info@tinkutara.com