Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 210695 by cherokeesay last updated on 16/Aug/24

Commented by A5T last updated on 17/Aug/24

Answered by mr W last updated on 17/Aug/24

Commented by mr W last updated on 17/Aug/24

the numbers in the figure mean the  ratios of the corresponding segments,  i.e. 1:3, 1:a:b.  we have  (1/a)×(a/b)×(4/1)=1 ⇒b=4  (1/(a+b))×(3/1)×(4/1)=1 ⇒a+b=12 ⇒a=8  [ABE]=(1/4)[ABC]  [AHE]=(1/(1+a+b))×[ABE]=(1/(13))×(1/4)[ABC]=(1/(52))[ABC]  [HFG]=[ABC]−3×(1/4)[ABC]+3×(1/(52))[ABC]                 =(7/(26))[ABC]=(7/(26))×26=7 ✓

$${the}\:{numbers}\:{in}\:{the}\:{figure}\:{mean}\:{the} \\ $$$${ratios}\:{of}\:{the}\:{corresponding}\:{segments}, \\ $$$${i}.{e}.\:\mathrm{1}:\mathrm{3},\:\mathrm{1}:{a}:{b}. \\ $$$${we}\:{have} \\ $$$$\frac{\mathrm{1}}{{a}}×\frac{{a}}{{b}}×\frac{\mathrm{4}}{\mathrm{1}}=\mathrm{1}\:\Rightarrow{b}=\mathrm{4} \\ $$$$\frac{\mathrm{1}}{{a}+{b}}×\frac{\mathrm{3}}{\mathrm{1}}×\frac{\mathrm{4}}{\mathrm{1}}=\mathrm{1}\:\Rightarrow{a}+{b}=\mathrm{12}\:\Rightarrow{a}=\mathrm{8} \\ $$$$\left[{ABE}\right]=\frac{\mathrm{1}}{\mathrm{4}}\left[{ABC}\right] \\ $$$$\left[{AHE}\right]=\frac{\mathrm{1}}{\mathrm{1}+{a}+{b}}×\left[{ABE}\right]=\frac{\mathrm{1}}{\mathrm{13}}×\frac{\mathrm{1}}{\mathrm{4}}\left[{ABC}\right]=\frac{\mathrm{1}}{\mathrm{52}}\left[{ABC}\right] \\ $$$$\left[{HFG}\right]=\left[{ABC}\right]−\mathrm{3}×\frac{\mathrm{1}}{\mathrm{4}}\left[{ABC}\right]+\mathrm{3}×\frac{\mathrm{1}}{\mathrm{52}}\left[{ABC}\right] \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{7}}{\mathrm{26}}\left[{ABC}\right]=\frac{\mathrm{7}}{\mathrm{26}}×\mathrm{26}=\mathrm{7}\:\checkmark \\ $$

Commented by cherokeesay last updated on 17/Aug/24

so nice ! thank you sir !

$${so}\:{nice}\:!\:{thank}\:{you}\:{sir}\:! \\ $$

Commented by cherokeesay last updated on 17/Aug/24

thank you !

$${thank}\:{you}\:! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com