Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 210606 by peter frank last updated on 13/Aug/24

Answered by A5T last updated on 14/Aug/24

3(y^(log_5 2) )+(y^(log_y 2×log_5 y) )=3(y^(log_5 2) )+y^(log_5 2) =64  ⇒y^(log_5 2) =16⇒y=16^(1/(log_5 2)) =(2^4 )^(log_2 5) =(2^(log_2 5) )^4 =5^4   ⇒y=625

$$\mathrm{3}\left({y}^{{log}_{\mathrm{5}} \mathrm{2}} \right)+\left({y}^{{log}_{{y}} \mathrm{2}×{log}_{\mathrm{5}} {y}} \right)=\mathrm{3}\left({y}^{{log}_{\mathrm{5}} \mathrm{2}} \right)+{y}^{{log}_{\mathrm{5}} \mathrm{2}} =\mathrm{64} \\ $$$$\Rightarrow{y}^{{log}_{\mathrm{5}} \mathrm{2}} =\mathrm{16}\Rightarrow{y}=\mathrm{16}^{\frac{\mathrm{1}}{{log}_{\mathrm{5}} \mathrm{2}}} =\left(\mathrm{2}^{\mathrm{4}} \right)^{{log}_{\mathrm{2}} \mathrm{5}} =\left(\mathrm{2}^{{log}_{\mathrm{2}} \mathrm{5}} \right)^{\mathrm{4}} =\mathrm{5}^{\mathrm{4}} \\ $$$$\Rightarrow{y}=\mathrm{625} \\ $$

Commented by peter frank last updated on 14/Aug/24

more clarification please? first line

$$\mathrm{more}\:\mathrm{clarification}\:\mathrm{please}?\:\mathrm{first}\:\mathrm{line} \\ $$

Commented by A5T last updated on 14/Aug/24

2=y^(log_y 2) ⇒2^(log_5 y) =(y^(log_y 2) )^(log_5 y) =y^(((log2)/(logy))×((logy)/(log5))) =y^((log2)/(log5))   =y^(log_5 2)

$$\mathrm{2}={y}^{{log}_{{y}} \mathrm{2}} \Rightarrow\mathrm{2}^{{log}_{\mathrm{5}} {y}} =\left({y}^{{log}_{{y}} \mathrm{2}} \right)^{{log}_{\mathrm{5}} {y}} ={y}^{\frac{{log}\mathrm{2}}{{logy}}×\frac{{logy}}{{log}\mathrm{5}}} ={y}^{\frac{{log}\mathrm{2}}{{log}\mathrm{5}}} \\ $$$$={y}^{{log}_{\mathrm{5}} \mathrm{2}} \\ $$

Answered by Spillover last updated on 14/Aug/24

Terms of Service

Privacy Policy

Contact: info@tinkutara.com