Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 210496 by lmcp1203 last updated on 11/Aug/24

Commented by mr W last updated on 11/Aug/24

has that bracket a special meaning?

$${has}\:{that}\:{bracket}\:{a}\:{special}\:{meaning}? \\ $$

Commented by lmcp1203 last updated on 11/Aug/24

please help me thanks

$${please}\:{help}\:{me}\:{thanks} \\ $$

Commented by klipto last updated on 11/Aug/24

that should be floor function

$$\boldsymbol{\mathrm{that}}\:\boldsymbol{\mathrm{should}}\:\boldsymbol{\mathrm{be}}\:\boldsymbol{\mathrm{floor}}\:\boldsymbol{\mathrm{function}} \\ $$

Commented by lmcp1203 last updated on 11/Aug/24

yes

$${yes} \\ $$

Answered by Frix last updated on 11/Aug/24

f(x)=∣3−2x∣= { ((3−2x, x≤(3/2))),((2x−3, x>(3/2))) :}  g(x)=⌊∣−3x∣⌋+⌊4x+1⌋=                              = { ((1+⌊−3x⌋+⌊4x⌋, x≤0)),((1+⌊3x⌋+⌊4x⌋, x>0)) :}  ⇒  f(x)≥0, x∈R     f((3/2))=0  g(x)≤0, x<0;     g(x)≥1; x≥0  ⇒ possible solutions for x∈]0, (3/2)[  ⇒  3−2x=1+⌊3x⌋+⌊4x⌋  h(x)=2x+⌊3x⌋+⌊4x⌋=2  lim_(x→1/3^− )  h(x) =−(1/3)  lim_(x→1/3^+ )  h(x) =+(2/3)  ⇒ no solution

$${f}\left({x}\right)=\mid\mathrm{3}−\mathrm{2}{x}\mid=\begin{cases}{\mathrm{3}−\mathrm{2}{x},\:{x}\leqslant\frac{\mathrm{3}}{\mathrm{2}}}\\{\mathrm{2}{x}−\mathrm{3},\:{x}>\frac{\mathrm{3}}{\mathrm{2}}}\end{cases} \\ $$$${g}\left({x}\right)=\lfloor\mid−\mathrm{3}{x}\mid\rfloor+\lfloor\mathrm{4}{x}+\mathrm{1}\rfloor= \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\begin{cases}{\mathrm{1}+\lfloor−\mathrm{3}{x}\rfloor+\lfloor\mathrm{4}{x}\rfloor,\:{x}\leqslant\mathrm{0}}\\{\mathrm{1}+\lfloor\mathrm{3}{x}\rfloor+\lfloor\mathrm{4}{x}\rfloor,\:{x}>\mathrm{0}}\end{cases} \\ $$$$\Rightarrow \\ $$$${f}\left({x}\right)\geqslant\mathrm{0},\:{x}\in\mathbb{R}\:\:\:\:\:{f}\left(\frac{\mathrm{3}}{\mathrm{2}}\right)=\mathrm{0} \\ $$$${g}\left({x}\right)\leqslant\mathrm{0},\:{x}<\mathrm{0};\:\:\:\:\:{g}\left({x}\right)\geqslant\mathrm{1};\:{x}\geqslant\mathrm{0} \\ $$$$\left.\Rightarrow\:\mathrm{possible}\:\mathrm{solutions}\:\mathrm{for}\:{x}\in\right]\mathrm{0},\:\frac{\mathrm{3}}{\mathrm{2}}\left[\right. \\ $$$$\Rightarrow \\ $$$$\mathrm{3}−\mathrm{2}{x}=\mathrm{1}+\lfloor\mathrm{3}{x}\rfloor+\lfloor\mathrm{4}{x}\rfloor \\ $$$${h}\left({x}\right)=\mathrm{2}{x}+\lfloor\mathrm{3}{x}\rfloor+\lfloor\mathrm{4}{x}\rfloor=\mathrm{2} \\ $$$$\underset{{x}\rightarrow\mathrm{1}/\mathrm{3}^{−} } {\mathrm{lim}}\:{h}\left({x}\right)\:=−\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\underset{{x}\rightarrow\mathrm{1}/\mathrm{3}^{+} } {\mathrm{lim}}\:{h}\left({x}\right)\:=+\frac{\mathrm{2}}{\mathrm{3}} \\ $$$$\Rightarrow\:\mathrm{no}\:\mathrm{solution} \\ $$

Commented by lmcp1203 last updated on 12/Aug/24

thanks sir

$${thanks}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com