Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 210441 by universe last updated on 09/Aug/24

Answered by aleks041103 last updated on 09/Aug/24

(i)   for odd n, the function sin^n (nx) is similar  to sin(x) with the fact that the primitive function oscilates  between 0 and the maximal possible value  ∫_0 ^( π/n) sin^n (nx)dx = (1/n)∫_0 ^( π) sin^n (x)dx≤  ≤(1/n)∫_0 ^( π) sin(x)dx=(2/n)    s_n =F_n (1)−F_n (0)  for odd n we have F_n (x)∈[0,2/n]  then s_n ≤(2/n), odd n.

$$\left({i}\right)\: \\ $$$${for}\:{odd}\:{n},\:{the}\:{function}\:{sin}^{{n}} \left({nx}\right)\:{is}\:{similar} \\ $$$${to}\:{sin}\left({x}\right)\:{with}\:{the}\:{fact}\:{that}\:{the}\:{primitive}\:{function}\:{oscilates} \\ $$$${between}\:\mathrm{0}\:{and}\:{the}\:{maximal}\:{possible}\:{value} \\ $$$$\int_{\mathrm{0}} ^{\:\pi/{n}} {sin}^{{n}} \left({nx}\right){dx}\:=\:\frac{\mathrm{1}}{{n}}\int_{\mathrm{0}} ^{\:\pi} {sin}^{{n}} \left({x}\right){dx}\leqslant \\ $$$$\leqslant\frac{\mathrm{1}}{{n}}\int_{\mathrm{0}} ^{\:\pi} {sin}\left({x}\right){dx}=\frac{\mathrm{2}}{{n}} \\ $$$$ \\ $$$${s}_{{n}} ={F}_{{n}} \left(\mathrm{1}\right)−{F}_{{n}} \left(\mathrm{0}\right) \\ $$$${for}\:{odd}\:{n}\:{we}\:{have}\:{F}_{{n}} \left({x}\right)\in\left[\mathrm{0},\mathrm{2}/{n}\right] \\ $$$${then}\:{s}_{{n}} \leqslant\frac{\mathrm{2}}{{n}},\:{odd}\:{n}. \\ $$

Answered by aleks041103 last updated on 09/Aug/24

(ii) for even n:  ∫_0 ^( 1) sin^n (nx)dx=(1/n)∫_0 ^( n) sin^n (x)dx=  =(1/n)[Σ_(k=0) ^(⌊n/π⌋−1) ∫_(πk) ^( π(k+1)) sin^n (x)dx + ∫_(π⌊n/π⌋) ^( n) sin^n (x)dx]=  =(1/n)(⌊(n/π)⌋+c)∫_0 ^( π) sin^n (x)dx  where 0<c<1.    now let  I_n =∫_0 ^( π) sin^(2n) (x)dx=  =∫_0 ^( π) sin^(2n−2) (x)dx − ∫_0 ^( π) cos(x)d(((sin^(2n−1) (x))/(2n−1)))dx=  =I_(n−1) −[((sin^(2n−1) (x)cos(x))/(2n−1))]_0 ^π −(1/(2n−1))∫_0 ^( π) sin^(2n) (x)dx=  =I_(n−1) −(1/(2n−1))I_n   ⇒I_(n−1) =((2n)/(2n−1))I_n   ⇒I_n =((2n−1)/(2n))I_(n−1)   ⇒I_n =(((2n−1)(2n−3)...3.1)/((2n)(2n−2)...4.2))I_0   I_0 =∫_0 ^( π) dx=π  ⇒I_n =(((2n−1)!!)/((2n)!!))π  (2n)!!=2^n n!  (2n−1)!!=(((2n)!)/((2n)!!))=(((2n)!)/(2^n n!))  ⇒I_n =(((2n)!)/(4^n (n!)^2 ))π  ⇒s_(2n) =(1/(2n))(⌊((2n)/π)⌋+c_n )I_n =(π/(2n))(⌊((2n)/π)⌋+c_n )(((2n)!)/(4^n (n!)^2 ))  Stirling:  x! ∼ (√(2πx)) ((x/e))^x   ⇒(2n)! ∼ (√(4πn))(((2n)/e))^(2n) =(√(4πn ))4^n  ((n/e))^(2n)   ⇒(n!)^2  ∼ 2πn((n/e))^(2n)   ⇒s_(2n) =(π/(2n))(⌊((2n)/π)⌋+c_n )(((2n)!)/(4^n (n!)^2 )) ∼ (π/(2n))(⌊((2n)/π)⌋+c_n )((√(4πn))/(2πn))  ⇒s_(2n) ∼ (π/(2n))(⌊((2n)/π)⌋+c_n )(1/( (√(πn))))  it is easy to see that (π/(2n))⌊((2n)/π)⌋∼1  ⇒s_(2n) ∼ (1/( (√(πn))))  ⇒s_(2n) →0    from (i) we have 0<s_(2n+1) <(2/(2n+1))  ⇒s_(2n+1) →0    ⇒s_n →0  ⇒ the only limiting point is 0.

$$\left({ii}\right)\:{for}\:{even}\:{n}: \\ $$$$\int_{\mathrm{0}} ^{\:\mathrm{1}} {sin}^{{n}} \left({nx}\right){dx}=\frac{\mathrm{1}}{{n}}\int_{\mathrm{0}} ^{\:{n}} {sin}^{{n}} \left({x}\right){dx}= \\ $$$$=\frac{\mathrm{1}}{{n}}\left[\underset{{k}=\mathrm{0}} {\overset{\lfloor{n}/\pi\rfloor−\mathrm{1}} {\sum}}\int_{\pi{k}} ^{\:\pi\left({k}+\mathrm{1}\right)} {sin}^{{n}} \left({x}\right){dx}\:+\:\int_{\pi\lfloor{n}/\pi\rfloor} ^{\:{n}} {sin}^{{n}} \left({x}\right){dx}\right]= \\ $$$$=\frac{\mathrm{1}}{{n}}\left(\lfloor\frac{{n}}{\pi}\rfloor+{c}\right)\int_{\mathrm{0}} ^{\:\pi} {sin}^{{n}} \left({x}\right){dx} \\ $$$${where}\:\mathrm{0}<{c}<\mathrm{1}. \\ $$$$ \\ $$$${now}\:{let} \\ $$$${I}_{{n}} =\int_{\mathrm{0}} ^{\:\pi} {sin}^{\mathrm{2}{n}} \left({x}\right){dx}= \\ $$$$=\int_{\mathrm{0}} ^{\:\pi} {sin}^{\mathrm{2}{n}−\mathrm{2}} \left({x}\right){dx}\:−\:\int_{\mathrm{0}} ^{\:\pi} {cos}\left({x}\right){d}\left(\frac{{sin}^{\mathrm{2}{n}−\mathrm{1}} \left({x}\right)}{\mathrm{2}{n}−\mathrm{1}}\right){dx}= \\ $$$$={I}_{{n}−\mathrm{1}} −\left[\frac{{sin}^{\mathrm{2}{n}−\mathrm{1}} \left({x}\right){cos}\left({x}\right)}{\mathrm{2}{n}−\mathrm{1}}\right]_{\mathrm{0}} ^{\pi} −\frac{\mathrm{1}}{\mathrm{2}{n}−\mathrm{1}}\int_{\mathrm{0}} ^{\:\pi} {sin}^{\mathrm{2}{n}} \left({x}\right){dx}= \\ $$$$={I}_{{n}−\mathrm{1}} −\frac{\mathrm{1}}{\mathrm{2}{n}−\mathrm{1}}{I}_{{n}} \\ $$$$\Rightarrow{I}_{{n}−\mathrm{1}} =\frac{\mathrm{2}{n}}{\mathrm{2}{n}−\mathrm{1}}{I}_{{n}} \\ $$$$\Rightarrow{I}_{{n}} =\frac{\mathrm{2}{n}−\mathrm{1}}{\mathrm{2}{n}}{I}_{{n}−\mathrm{1}} \\ $$$$\Rightarrow{I}_{{n}} =\frac{\left(\mathrm{2}{n}−\mathrm{1}\right)\left(\mathrm{2}{n}−\mathrm{3}\right)...\mathrm{3}.\mathrm{1}}{\left(\mathrm{2}{n}\right)\left(\mathrm{2}{n}−\mathrm{2}\right)...\mathrm{4}.\mathrm{2}}{I}_{\mathrm{0}} \\ $$$${I}_{\mathrm{0}} =\int_{\mathrm{0}} ^{\:\pi} {dx}=\pi \\ $$$$\Rightarrow{I}_{{n}} =\frac{\left(\mathrm{2}{n}−\mathrm{1}\right)!!}{\left(\mathrm{2}{n}\right)!!}\pi \\ $$$$\left(\mathrm{2}{n}\right)!!=\mathrm{2}^{{n}} {n}! \\ $$$$\left(\mathrm{2}{n}−\mathrm{1}\right)!!=\frac{\left(\mathrm{2}{n}\right)!}{\left(\mathrm{2}{n}\right)!!}=\frac{\left(\mathrm{2}{n}\right)!}{\mathrm{2}^{{n}} {n}!} \\ $$$$\Rightarrow{I}_{{n}} =\frac{\left(\mathrm{2}{n}\right)!}{\mathrm{4}^{{n}} \left({n}!\right)^{\mathrm{2}} }\pi \\ $$$$\Rightarrow{s}_{\mathrm{2}{n}} =\frac{\mathrm{1}}{\mathrm{2}{n}}\left(\lfloor\frac{\mathrm{2}{n}}{\pi}\rfloor+{c}_{{n}} \right){I}_{{n}} =\frac{\pi}{\mathrm{2}{n}}\left(\lfloor\frac{\mathrm{2}{n}}{\pi}\rfloor+{c}_{{n}} \right)\frac{\left(\mathrm{2}{n}\right)!}{\mathrm{4}^{{n}} \left({n}!\right)^{\mathrm{2}} } \\ $$$${Stirling}: \\ $$$${x}!\:\sim\:\sqrt{\mathrm{2}\pi{x}}\:\left(\frac{{x}}{{e}}\right)^{{x}} \\ $$$$\Rightarrow\left(\mathrm{2}{n}\right)!\:\sim\:\sqrt{\mathrm{4}\pi{n}}\left(\frac{\mathrm{2}{n}}{{e}}\right)^{\mathrm{2}{n}} =\sqrt{\mathrm{4}\pi{n}\:}\mathrm{4}^{{n}} \:\left(\frac{{n}}{{e}}\right)^{\mathrm{2}{n}} \\ $$$$\Rightarrow\left({n}!\right)^{\mathrm{2}} \:\sim\:\mathrm{2}\pi{n}\left(\frac{{n}}{{e}}\right)^{\mathrm{2}{n}} \\ $$$$\Rightarrow{s}_{\mathrm{2}{n}} =\frac{\pi}{\mathrm{2}{n}}\left(\lfloor\frac{\mathrm{2}{n}}{\pi}\rfloor+{c}_{{n}} \right)\frac{\left(\mathrm{2}{n}\right)!}{\mathrm{4}^{{n}} \left({n}!\right)^{\mathrm{2}} }\:\sim\:\frac{\pi}{\mathrm{2}{n}}\left(\lfloor\frac{\mathrm{2}{n}}{\pi}\rfloor+{c}_{{n}} \right)\frac{\sqrt{\mathrm{4}\pi{n}}}{\mathrm{2}\pi{n}} \\ $$$$\Rightarrow{s}_{\mathrm{2}{n}} \sim\:\frac{\pi}{\mathrm{2}{n}}\left(\lfloor\frac{\mathrm{2}{n}}{\pi}\rfloor+{c}_{{n}} \right)\frac{\mathrm{1}}{\:\sqrt{\pi{n}}} \\ $$$${it}\:{is}\:{easy}\:{to}\:{see}\:{that}\:\frac{\pi}{\mathrm{2}{n}}\lfloor\frac{\mathrm{2}{n}}{\pi}\rfloor\sim\mathrm{1} \\ $$$$\Rightarrow{s}_{\mathrm{2}{n}} \sim\:\frac{\mathrm{1}}{\:\sqrt{\pi{n}}} \\ $$$$\Rightarrow{s}_{\mathrm{2}{n}} \rightarrow\mathrm{0} \\ $$$$ \\ $$$${from}\:\left({i}\right)\:{we}\:{have}\:\mathrm{0}<{s}_{\mathrm{2}{n}+\mathrm{1}} <\frac{\mathrm{2}}{\mathrm{2}{n}+\mathrm{1}} \\ $$$$\Rightarrow{s}_{\mathrm{2}{n}+\mathrm{1}} \rightarrow\mathrm{0} \\ $$$$ \\ $$$$\Rightarrow{s}_{{n}} \rightarrow\mathrm{0} \\ $$$$\Rightarrow\:{the}\:{only}\:{limiting}\:{point}\:{is}\:\mathrm{0}. \\ $$

Commented by hardmath last updated on 11/Aug/24

  Dear professor, your solutions are perfect

$$ \\ $$Dear professor, your solutions are perfect

Terms of Service

Privacy Policy

Contact: info@tinkutara.com