Question Number 210390 by hardmath last updated on 08/Aug/24 | ||
![]() | ||
Answered by Berbere last updated on 08/Aug/24 | ||
![]() | ||
$${t}\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{{t}}\right)={f}\left({t}\right) \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}{f}\left({x}\right)=\mathrm{1}\Rightarrow\exists{M}\in\mathbb{R}_{+} \:\forall{x}\geqslant{M}\:\:\frac{\mathrm{1}}{\mathrm{2}}\:\leqslant{f}\left({x}\right)\leqslant\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\Rightarrow\forall{x}\geqslant{M} \\ $$$${f}\left({x}\right)>\mathrm{0}\Rightarrow{F}\left({x}\right)=\int_{{M}} ^{{x}} {f}\left({x}\right){dx}\:\:{is}\:{increase}\:{positive}\:{function}\:\forall{x}\geqslant{M} \\ $$$$\Rightarrow\int_{{x}} ^{{x}+\frac{\mathrm{2}}{{x}}} {t}\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{{t}}\right){dt}={F}\left({x}+\frac{\mathrm{2}}{{x}}\right)−{F}\left({x}\right) \\ $$$$\left.{mean}\:{value}\:{Theorem}\:\exists{c}\in\right]{x},{x}+\frac{\mathrm{2}}{{x}}\left[\:{suche}\right. \\ $$$${x}+\frac{\mathrm{2}}{{x}}>{c}>{x} \\ $$$${F}\left({x}+\frac{\mathrm{2}}{{x}}\right)−{F}\left({x}\right)=\left({x}+\frac{\mathrm{2}}{{x}}−{x}\right){f}\left({c}\right)=\frac{\mathrm{2}}{{x}}{f}\left({c}\right) \\ $$$${f}\:{is}\:{bounded}\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}{f}\left({x}\right)=\mathrm{1}\Rightarrow\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}{F}\left({x}+\frac{\mathrm{2}}{{x}}\right)−{F}\left({x}\right)=\mathrm{0} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$ | ||
Commented by hardmath last updated on 08/Aug/24 | ||
![]() | ||
$$\mathrm{Thankyou}\:\mathrm{dear}\:\mathrm{professor}\:\mathrm{perfect} \\ $$ | ||