Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 210390 by hardmath last updated on 08/Aug/24

Answered by Berbere last updated on 08/Aug/24

ttan^(−1) ((1/t))=f(t)  lim_(x→∞) f(x)=1⇒∃M∈R_+  ∀x≥M  (1/2) ≤f(x)≤(3/2)  ⇒∀x≥M  f(x)>0⇒F(x)=∫_M ^x f(x)dx  is increase positive function ∀x≥M  ⇒∫_x ^(x+(2/x)) ttan^(−1) ((1/t))dt=F(x+(2/x))−F(x)  mean value Theorem ∃c∈]x,x+(2/x)[ suche  x+(2/x)>c>x  F(x+(2/x))−F(x)=(x+(2/x)−x)f(c)=(2/x)f(c)  f is bounded lim_(x→∞) f(x)=1⇒lim_(x→0) F(x+(2/x))−F(x)=0

$${t}\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{{t}}\right)={f}\left({t}\right) \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}{f}\left({x}\right)=\mathrm{1}\Rightarrow\exists{M}\in\mathbb{R}_{+} \:\forall{x}\geqslant{M}\:\:\frac{\mathrm{1}}{\mathrm{2}}\:\leqslant{f}\left({x}\right)\leqslant\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\Rightarrow\forall{x}\geqslant{M} \\ $$$${f}\left({x}\right)>\mathrm{0}\Rightarrow{F}\left({x}\right)=\int_{{M}} ^{{x}} {f}\left({x}\right){dx}\:\:{is}\:{increase}\:{positive}\:{function}\:\forall{x}\geqslant{M} \\ $$$$\Rightarrow\int_{{x}} ^{{x}+\frac{\mathrm{2}}{{x}}} {t}\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{{t}}\right){dt}={F}\left({x}+\frac{\mathrm{2}}{{x}}\right)−{F}\left({x}\right) \\ $$$$\left.{mean}\:{value}\:{Theorem}\:\exists{c}\in\right]{x},{x}+\frac{\mathrm{2}}{{x}}\left[\:{suche}\right. \\ $$$${x}+\frac{\mathrm{2}}{{x}}>{c}>{x} \\ $$$${F}\left({x}+\frac{\mathrm{2}}{{x}}\right)−{F}\left({x}\right)=\left({x}+\frac{\mathrm{2}}{{x}}−{x}\right){f}\left({c}\right)=\frac{\mathrm{2}}{{x}}{f}\left({c}\right) \\ $$$${f}\:{is}\:{bounded}\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}{f}\left({x}\right)=\mathrm{1}\Rightarrow\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}{F}\left({x}+\frac{\mathrm{2}}{{x}}\right)−{F}\left({x}\right)=\mathrm{0} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Commented by hardmath last updated on 08/Aug/24

Thankyou dear professor perfect

$$\mathrm{Thankyou}\:\mathrm{dear}\:\mathrm{professor}\:\mathrm{perfect} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com