Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 210374 by Spillover last updated on 08/Aug/24

Commented by Frix last updated on 08/Aug/24

=Li_(1000)  (1)  Better question:  Show that  (1/(n!))∫_0 ^∞ (x^n /(e^x −1))=Li_(n+1)  (1)

$$=\mathrm{Li}_{\mathrm{1000}} \:\left(\mathrm{1}\right) \\ $$$$\mathrm{Better}\:\mathrm{question}: \\ $$$$\mathrm{Show}\:\mathrm{that} \\ $$$$\frac{\mathrm{1}}{{n}!}\underset{\mathrm{0}} {\overset{\infty} {\int}}\frac{{x}^{{n}} }{\mathrm{e}^{{x}} −\mathrm{1}}=\mathrm{Li}_{{n}+\mathrm{1}} \:\left(\mathrm{1}\right) \\ $$

Answered by Berbere last updated on 08/Aug/24

∫_0 ^∞ (x^(s−1) /(e^x −1))dx=ζ(s)Γ(s) ∀S∈C Re(s)>1

$$\int_{\mathrm{0}} ^{\infty} \frac{{x}^{{s}−\mathrm{1}} }{{e}^{{x}} −\mathrm{1}}{dx}=\zeta\left({s}\right)\Gamma\left({s}\right)\:\forall{S}\in\mathbb{C}\:{Re}\left({s}\right)>\mathrm{1} \\ $$

Commented by Spillover last updated on 09/Aug/24

great.

$${great}. \\ $$

Answered by Spillover last updated on 09/Aug/24

Answered by Spillover last updated on 09/Aug/24

Answered by Spillover last updated on 09/Aug/24

Terms of Service

Privacy Policy

Contact: info@tinkutara.com