Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 210289 by Abdullahrussell last updated on 05/Aug/24

Answered by Frix last updated on 05/Aug/24

There′s one number x with nice properties:  x^2 =x+1, x^3 =2x+1,  (1/x)=x−1, (1/x^2 )=2−x, (1/x^3 )=2x−1  ⇒  (√((x−1)/x^3 ))=(√(1/x^4 ))=(1/x^2 )=2−x  (√((x^2 −1)/x^3 ))=(√(1/x^2 ))=(1/x)=x−1  2−x+x−1=1 true ⇒  The number is x=ϕ=(1/2)+((√5)/2)

$$\mathrm{There}'\mathrm{s}\:\mathrm{one}\:\mathrm{number}\:{x}\:\mathrm{with}\:\mathrm{nice}\:\mathrm{properties}: \\ $$$${x}^{\mathrm{2}} ={x}+\mathrm{1},\:{x}^{\mathrm{3}} =\mathrm{2}{x}+\mathrm{1}, \\ $$$$\frac{\mathrm{1}}{{x}}={x}−\mathrm{1},\:\frac{\mathrm{1}}{{x}^{\mathrm{2}} }=\mathrm{2}−{x},\:\frac{\mathrm{1}}{{x}^{\mathrm{3}} }=\mathrm{2}{x}−\mathrm{1} \\ $$$$\Rightarrow \\ $$$$\sqrt{\frac{{x}−\mathrm{1}}{{x}^{\mathrm{3}} }}=\sqrt{\frac{\mathrm{1}}{{x}^{\mathrm{4}} }}=\frac{\mathrm{1}}{{x}^{\mathrm{2}} }=\mathrm{2}−{x} \\ $$$$\sqrt{\frac{{x}^{\mathrm{2}} −\mathrm{1}}{{x}^{\mathrm{3}} }}=\sqrt{\frac{\mathrm{1}}{{x}^{\mathrm{2}} }}=\frac{\mathrm{1}}{{x}}={x}−\mathrm{1} \\ $$$$\mathrm{2}−{x}+{x}−\mathrm{1}=\mathrm{1}\:\mathrm{true}\:\Rightarrow \\ $$$$\mathrm{The}\:\mathrm{number}\:\mathrm{is}\:{x}=\varphi=\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com