Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 210234 by peter frank last updated on 03/Aug/24

Commented by Pnk2024 last updated on 03/Aug/24

 we know that    sin^2 θ+cos^2 θ=1  ⇒  cos^2 θ=1−sin^2 θ  ⇒  cosθ ×cosθ = (1+sinθ)(1−sinθ)  ⇒ ((cosθ)/(1−sinθ)) = ((1+sinθ)/(cosθ))  ⇒ ((cosθ)/(1−sinθ))=((1+sinθ−cosθ)/(cosθ−(1−sinθ))) by theorem of equal ratio  ⇒ ((sinθ−cosθ+1)/(sinθ+cosθ−1))=((cosθ /cosθ)/((1−sinθ)/cosθ))                                          =(1/((1/(cosθ))−((sinθ)/(cosθ))))  ⇒ ((sinθ−cosθ+1)/(sinθ+cosθ−1))=(1/(secθ−tanθ))       this is proved

$$\:{we}\:{know}\:{that} \\ $$$$\:\:{sin}^{\mathrm{2}} \theta+{cos}^{\mathrm{2}} \theta=\mathrm{1} \\ $$$$\Rightarrow\:\:{cos}^{\mathrm{2}} \theta=\mathrm{1}−{sin}^{\mathrm{2}} \theta \\ $$$$\Rightarrow\:\:{cos}\theta\:×{cos}\theta\:=\:\left(\mathrm{1}+{sin}\theta\right)\left(\mathrm{1}−{sin}\theta\right) \\ $$$$\Rightarrow\:\frac{{cos}\theta}{\mathrm{1}−{sin}\theta}\:=\:\frac{\mathrm{1}+{sin}\theta}{{cos}\theta} \\ $$$$\Rightarrow\:\frac{{cos}\theta}{\mathrm{1}−{sin}\theta}=\frac{\mathrm{1}+{sin}\theta−{cos}\theta}{{cos}\theta−\left(\mathrm{1}−{sin}\theta\right)}\:{by}\:{theorem}\:{of}\:{equal}\:{ratio} \\ $$$$\Rightarrow\:\frac{{sin}\theta−{cos}\theta+\mathrm{1}}{{sin}\theta+{cos}\theta−\mathrm{1}}=\frac{{cos}\theta\:/{cos}\theta}{\left(\mathrm{1}−{sin}\theta\right)/{cos}\theta}\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\frac{\mathrm{1}}{{cos}\theta}−\frac{{sin}\theta}{{cos}\theta}} \\ $$$$\Rightarrow\:\frac{{sin}\theta−{cos}\theta+\mathrm{1}}{{sin}\theta+{cos}\theta−\mathrm{1}}=\frac{\mathrm{1}}{{sec}\theta−{tan}\theta} \\ $$$$\:\:\:\:\:{this}\:{is}\:{proved}\: \\ $$

Commented by peter frank last updated on 04/Aug/24

thank you

$$\mathrm{thank}\:\mathrm{you} \\ $$

Answered by efronzo1 last updated on 04/Aug/24

  ((sin θ−cos θ+1)/(sin θ+cos θ−1)) =^?  (1/(sec θ−tan θ))     ⋐

$$\:\:\frac{\mathrm{sin}\:\theta−\mathrm{cos}\:\theta+\mathrm{1}}{\mathrm{sin}\:\theta+\mathrm{cos}\:\theta−\mathrm{1}}\:\overset{?} {=}\:\frac{\mathrm{1}}{\mathrm{sec}\:\theta−\mathrm{tan}\:\theta} \\ $$$$\:\:\:\underbrace{\Subset} \\ $$

Commented by peter frank last updated on 04/Aug/24

thank you

$$\mathrm{thank}\:\mathrm{you} \\ $$

Answered by BaliramKumar last updated on 04/Aug/24

 (((sinx − cosx + 1)/cosx)/((sinx + cosx − 1)/cosx)) = ((tanx + secx − 1)/(tanx − secx + 1))    ((tanx + secx − 1)/(tanx − secx + (sec^2 x − tan^2 x)))    ((tanx + secx − 1)/((tanx − secx) + (secx − tanx)(secx + tanx)))    ((tanx + secx − 1)/((secx − tanx)(−1 + secx + tanx)))    (((tanx + secx − 1))/((secx − tanx)(tanx + secx − 1)))   = (1/(secx − tanx))

$$\:\frac{\left(\mathrm{sinx}\:−\:\mathrm{cosx}\:+\:\mathrm{1}\right)/\mathrm{cosx}}{\left(\mathrm{sinx}\:+\:\mathrm{cosx}\:−\:\mathrm{1}\right)/\mathrm{cosx}}\:=\:\frac{\mathrm{tanx}\:+\:\mathrm{secx}\:−\:\mathrm{1}}{\mathrm{tanx}\:−\:\mathrm{secx}\:+\:\mathrm{1}} \\ $$$$\:\:\frac{\mathrm{tanx}\:+\:\mathrm{secx}\:−\:\mathrm{1}}{\mathrm{tanx}\:−\:\mathrm{secx}\:+\:\left(\mathrm{sec}^{\mathrm{2}} \mathrm{x}\:−\:\mathrm{tan}^{\mathrm{2}} \mathrm{x}\right)} \\ $$$$\:\:\frac{\mathrm{tanx}\:+\:\mathrm{secx}\:−\:\mathrm{1}}{\left(\mathrm{tanx}\:−\:\mathrm{secx}\right)\:+\:\left(\mathrm{secx}\:−\:\mathrm{tanx}\right)\left(\mathrm{secx}\:+\:\mathrm{tanx}\right)} \\ $$$$\:\:\frac{\mathrm{tanx}\:+\:\mathrm{secx}\:−\:\mathrm{1}}{\left(\mathrm{secx}\:−\:\mathrm{tanx}\right)\left(−\mathrm{1}\:+\:\mathrm{secx}\:+\:\mathrm{tanx}\right)} \\ $$$$\:\:\frac{\cancel{\left(\mathrm{tanx}\:+\:\mathrm{secx}\:−\:\mathrm{1}\right)}}{\left(\mathrm{secx}\:−\:\mathrm{tanx}\right)\cancel{\left(\mathrm{tanx}\:+\:\mathrm{secx}\:−\:\mathrm{1}\right)}}\: \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{secx}\:−\:\mathrm{tanx}} \\ $$$$ \\ $$$$ \\ $$

Commented by peter frank last updated on 04/Aug/24

thank you

$$\mathrm{thank}\:\mathrm{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com