Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 210172 by efronzo1 last updated on 01/Aug/24

Answered by a.lgnaoui last updated on 02/Aug/24

((sin 2a)/(BE))=((cos a)/(AB))    (∡AED=90−2a)  AB=((DEcos a)/(sin 2a)).=((BE)/(2sin a))  Aire(ABC)=Aire(ADFC)+Aire(DBF)  Aire(BDE)=Aire(BEF)+Aire(BDF)  ⇒     Aire(ABC)−(ADFC)=   Aire(BDE)−38   { ((Aire(ABC)=(1/2)AB×ACsin 2a)),((Aire (BDE)=(1/2)BD.BEcos a)) :}  AC=BD  alors    ((2BE.cos a)/4)−A=(1/2)BEcos a−38    Donc            Aire(ADFC)=38

$$\frac{\mathrm{sin}\:\mathrm{2}\boldsymbol{\mathrm{a}}}{\boldsymbol{\mathrm{BE}}}=\frac{\mathrm{cos}\:\boldsymbol{\mathrm{a}}}{\boldsymbol{\mathrm{AB}}}\:\:\:\:\left(\measuredangle\mathrm{AED}=\mathrm{90}−\mathrm{2a}\right) \\ $$$$\mathrm{AB}=\frac{\mathrm{DEcos}\:\boldsymbol{\mathrm{a}}}{\mathrm{sin}\:\mathrm{2}\boldsymbol{\mathrm{a}}}.=\frac{\boldsymbol{\mathrm{BE}}}{\mathrm{2sin}\:\boldsymbol{\mathrm{a}}} \\ $$$$\boldsymbol{\mathrm{Aire}}\left(\boldsymbol{\mathrm{ABC}}\right)=\boldsymbol{\mathrm{Air}}\mathrm{e}\left(\boldsymbol{\mathrm{ADFC}}\right)+\boldsymbol{\mathrm{Aire}}\left(\boldsymbol{\mathrm{DBF}}\right) \\ $$$$\boldsymbol{\mathrm{A}}\mathrm{ire}\left(\mathrm{BDE}\right)=\mathrm{Aire}\left(\boldsymbol{\mathrm{BEF}}\right)+\boldsymbol{\mathrm{Aire}}\left(\boldsymbol{\mathrm{BDF}}\right) \\ $$$$\Rightarrow\: \\ $$$$\:\:\mathrm{Aire}\left(\mathrm{ABC}\right)−\left(\mathrm{ADFC}\right)= \\ $$$$\:\mathrm{Aire}\left(\mathrm{BDE}\right)−\mathrm{38} \\ $$$$\begin{cases}{\boldsymbol{\mathrm{Aire}}\left(\boldsymbol{\mathrm{ABC}}\right)=\frac{\mathrm{1}}{\mathrm{2}}\boldsymbol{\mathrm{AB}}×\boldsymbol{\mathrm{AC}}\mathrm{sin}\:\mathrm{2}\boldsymbol{\mathrm{a}}}\\{\boldsymbol{\mathrm{Aire}}\:\left(\boldsymbol{\mathrm{BDE}}\right)=\frac{\mathrm{1}}{\mathrm{2}}\boldsymbol{\mathrm{BD}}.\boldsymbol{\mathrm{BE}}\mathrm{cos}\:\boldsymbol{\mathrm{a}}}\end{cases} \\ $$$$\boldsymbol{\mathrm{AC}}=\boldsymbol{\mathrm{BD}}\:\:\boldsymbol{\mathrm{alors}} \\ $$$$\:\:\frac{\mathrm{2}\boldsymbol{\mathrm{BE}}.\mathrm{cos}\:\boldsymbol{\mathrm{a}}}{\mathrm{4}}−\boldsymbol{\mathrm{A}}=\frac{\mathrm{1}}{\mathrm{2}}\boldsymbol{\mathrm{BE}}\mathrm{cos}\:\boldsymbol{\mathrm{a}}−\mathrm{38} \\ $$$$ \\ $$$$\boldsymbol{\mathrm{Donc}}\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{Aire}}\left(\boldsymbol{\mathrm{ADFC}}\right)=\mathrm{38} \\ $$

Commented by a.lgnaoui last updated on 02/Aug/24

Answered by mr W last updated on 02/Aug/24

say AC=BD=b  DE=(b/(tan α))  AD=(b/(tan α tan 2α))  Area(BDE)=(b^2 /(2 tan α))  Area(ABC)=((b sin 2α)/2)(b+(b/(tan α tan 2α)))    =(b^2 /(2 tan α))(tan α sin 2α+cos 2α)    =(b^2 /(2 tan α))(2 sin^2  α+1−2 sin^2  α)    =(b^2 /(2 tan α))=Area(DBE)  ⇒Area(ADFC)=Area(BEF)=38

$${say}\:{AC}={BD}={b} \\ $$$${DE}=\frac{{b}}{\mathrm{tan}\:\alpha} \\ $$$${AD}=\frac{{b}}{\mathrm{tan}\:\alpha\:\mathrm{tan}\:\mathrm{2}\alpha} \\ $$$${Area}\left({BDE}\right)=\frac{{b}^{\mathrm{2}} }{\mathrm{2}\:\mathrm{tan}\:\alpha} \\ $$$${Area}\left({ABC}\right)=\frac{{b}\:\mathrm{sin}\:\mathrm{2}\alpha}{\mathrm{2}}\left({b}+\frac{{b}}{\mathrm{tan}\:\alpha\:\mathrm{tan}\:\mathrm{2}\alpha}\right) \\ $$$$\:\:=\frac{{b}^{\mathrm{2}} }{\mathrm{2}\:\mathrm{tan}\:\alpha}\left(\mathrm{tan}\:\alpha\:\mathrm{sin}\:\mathrm{2}\alpha+\mathrm{cos}\:\mathrm{2}\alpha\right) \\ $$$$\:\:=\frac{{b}^{\mathrm{2}} }{\mathrm{2}\:\mathrm{tan}\:\alpha}\left(\mathrm{2}\:\mathrm{sin}^{\mathrm{2}} \:\alpha+\mathrm{1}−\mathrm{2}\:\mathrm{sin}^{\mathrm{2}} \:\alpha\right) \\ $$$$\:\:=\frac{{b}^{\mathrm{2}} }{\mathrm{2}\:\mathrm{tan}\:\alpha}={Area}\left({DBE}\right) \\ $$$$\Rightarrow{Area}\left({ADFC}\right)={Area}\left({BEF}\right)=\mathrm{38} \\ $$

Answered by A5T last updated on 02/Aug/24

(([ABC])/([BDE]))=((AB×ACsin(2a))/(BD×DE))=((ABsin(2a))/(DE))  sin(2a)=((DE)/(AE)); ∠BEA=90−a=∠ABE⇒AB=AE  ⇒(([ABC])/([BDE]))=((ABsin(2a))/(AEsin(2a)))=1  ⇒38+[DBF]=[ADFC]+[DBF]⇒[ADFC]=38

$$\frac{\left[{ABC}\right]}{\left[{BDE}\right]}=\frac{{AB}×{ACsin}\left(\mathrm{2}{a}\right)}{{BD}×{DE}}=\frac{{ABsin}\left(\mathrm{2}{a}\right)}{{DE}} \\ $$$${sin}\left(\mathrm{2}{a}\right)=\frac{{DE}}{{AE}};\:\angle{BEA}=\mathrm{90}−{a}=\angle{ABE}\Rightarrow{AB}={AE} \\ $$$$\Rightarrow\frac{\left[{ABC}\right]}{\left[{BDE}\right]}=\frac{{ABsin}\left(\mathrm{2}{a}\right)}{{AEsin}\left(\mathrm{2}{a}\right)}=\mathrm{1} \\ $$$$\Rightarrow\mathrm{38}+\left[{DBF}\right]=\left[{ADFC}\right]+\left[{DBF}\right]\Rightarrow\left[{ADFC}\right]=\mathrm{38} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com