Question Number 209347 by RoseAli last updated on 07/Jul/24 | ||
![]() | ||
Answered by Berbere last updated on 07/Jul/24 | ||
![]() | ||
$$\int_{−\mathrm{4}} ^{\mathrm{4}} {f}\left({x}\right){dx}=\mathrm{2}\underset{\mathrm{0}} {\int}^{\mathrm{4}} {f}\left({x}^{\mathrm{2}} \right){dx} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{4}} {g}\left({x}\right){dx}=\int_{\mathrm{0}} ^{\mathrm{4}} {g}\left(\mathrm{4}−{x}\right)\Rightarrow\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{4}} {g}\left({x}\right)=\int_{\mathrm{0}} ^{\mathrm{4}} {g}\left({x}\right)+{g}\left(\mathrm{4}−{x}\right){dx}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{4}} {f}\left({x}^{\mathrm{2}} \right)+{g}\left({x}\right){dx}=\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{4}} {f}\left({x}^{\mathrm{2}} \right){dx}=\int_{\mathrm{0}} ^{\mathrm{4}} \mathrm{8}{x}^{\mathrm{3}} =\mathrm{2}\left[{x}^{\mathrm{4}} \right]_{\mathrm{0}} ^{\mathrm{4}} =\mathrm{512} \\ $$$$ \\ $$ | ||