Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 209272 by Tawa11 last updated on 05/Jul/24

Commented by Tawa11 last updated on 05/Jul/24

Find the shaded area.

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{shaded}\:\mathrm{area}. \\ $$

Answered by A5T last updated on 05/Jul/24

(r+R)^2 =r^2 +8^2   ⇒2rR+R^2 =64  2r=R⇒2R^2 =64⇒R=4(√2)⇒r=2(√2)  ⇒[Red]=8×2r−((πr^2 )/2)−((πR^2 )/4)=32(√2)−12π

$$\left({r}+{R}\right)^{\mathrm{2}} ={r}^{\mathrm{2}} +\mathrm{8}^{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{2}{rR}+{R}^{\mathrm{2}} =\mathrm{64} \\ $$$$\mathrm{2}{r}={R}\Rightarrow\mathrm{2}{R}^{\mathrm{2}} =\mathrm{64}\Rightarrow{R}=\mathrm{4}\sqrt{\mathrm{2}}\Rightarrow{r}=\mathrm{2}\sqrt{\mathrm{2}} \\ $$$$\Rightarrow\left[{Red}\right]=\mathrm{8}×\mathrm{2}{r}−\frac{\pi{r}^{\mathrm{2}} }{\mathrm{2}}−\frac{\pi{R}^{\mathrm{2}} }{\mathrm{4}}=\mathrm{32}\sqrt{\mathrm{2}}−\mathrm{12}\pi \\ $$

Commented by Tawa11 last updated on 05/Jul/24

Thanks sir. I appreciate.

$$\mathrm{Thanks}\:\mathrm{sir}.\:\mathrm{I}\:\mathrm{appreciate}. \\ $$

Answered by cherokeesay last updated on 06/Jul/24

Commented by Tawa11 last updated on 06/Jul/24

Thanks sir. I appreciate

$$\mathrm{Thanks}\:\mathrm{sir}.\:\mathrm{I}\:\mathrm{appreciate} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com