Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 209228 by universe last updated on 04/Jul/24

Answered by Frix last updated on 04/Jul/24

∫_0 ^(π/2) (cos x +sin x)^n dx=(√2)∫_0 ^(π/2) sin^n  (x+(π/4)) dx=  =(√2)∫_(π/4) ^((3π)/4) sin^n  t dt=a∈R^+   a×lim_(n→∞)  ((√n)/2^(n/2) ) =a×0=0

$$\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\left(\mathrm{cos}\:{x}\:+\mathrm{sin}\:{x}\right)^{{n}} {dx}=\sqrt{\mathrm{2}}\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\mathrm{sin}^{{n}} \:\left({x}+\frac{\pi}{\mathrm{4}}\right)\:{dx}= \\ $$$$=\sqrt{\mathrm{2}}\underset{\frac{\pi}{\mathrm{4}}} {\overset{\frac{\mathrm{3}\pi}{\mathrm{4}}} {\int}}\mathrm{sin}^{{n}} \:{t}\:{dt}={a}\in\mathbb{R}^{+} \\ $$$${a}×\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{\sqrt{{n}}}{\mathrm{2}^{\frac{{n}}{\mathrm{2}}} }\:={a}×\mathrm{0}=\mathrm{0} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com