Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 209041 by alcohol last updated on 30/Jun/24

Commented by alcohol last updated on 30/Jun/24

find r

$${find}\:{r} \\ $$

Commented by mr W last updated on 01/Jul/24

Answered by mr W last updated on 01/Jul/24

say touching point on y=x^2  at P(p, p^2 )  center of circle C(2−r, 2−r)  tan θ=2p  2−r=p+r sin θ ⇒2−r=p+((2pr)/( (√(1+4p^2 ))))  ⇒r=((2−p)/(1+((2p)/( (√(1+4p^2 ))))))  2−r=p^2 −r cos θ ⇒2−r=p^2 −(r/( (√(1+4p^2 ))))  ⇒r=((2−p^2 )/(1−(1/( (√(1+4p^2 ))))))  ((2−p^2 )/(1−(1/( (√(1+4p^2 ))))))=((2−p)/(1+((2p)/( (√(1+4p^2 ))))))  ⇒p≈1.3328, r≈0.3446

$${say}\:{touching}\:{point}\:{on}\:{y}={x}^{\mathrm{2}} \:{at}\:{P}\left({p},\:{p}^{\mathrm{2}} \right) \\ $$$${center}\:{of}\:{circle}\:{C}\left(\mathrm{2}−{r},\:\mathrm{2}−{r}\right) \\ $$$$\mathrm{tan}\:\theta=\mathrm{2}{p} \\ $$$$\mathrm{2}−{r}={p}+{r}\:\mathrm{sin}\:\theta\:\Rightarrow\mathrm{2}−{r}={p}+\frac{\mathrm{2}{pr}}{\:\sqrt{\mathrm{1}+\mathrm{4}{p}^{\mathrm{2}} }} \\ $$$$\Rightarrow{r}=\frac{\mathrm{2}−{p}}{\mathrm{1}+\frac{\mathrm{2}{p}}{\:\sqrt{\mathrm{1}+\mathrm{4}{p}^{\mathrm{2}} }}} \\ $$$$\mathrm{2}−{r}={p}^{\mathrm{2}} −{r}\:\mathrm{cos}\:\theta\:\Rightarrow\mathrm{2}−{r}={p}^{\mathrm{2}} −\frac{{r}}{\:\sqrt{\mathrm{1}+\mathrm{4}{p}^{\mathrm{2}} }} \\ $$$$\Rightarrow{r}=\frac{\mathrm{2}−{p}^{\mathrm{2}} }{\mathrm{1}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\mathrm{4}{p}^{\mathrm{2}} }}} \\ $$$$\frac{\mathrm{2}−{p}^{\mathrm{2}} }{\mathrm{1}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\mathrm{4}{p}^{\mathrm{2}} }}}=\frac{\mathrm{2}−{p}}{\mathrm{1}+\frac{\mathrm{2}{p}}{\:\sqrt{\mathrm{1}+\mathrm{4}{p}^{\mathrm{2}} }}} \\ $$$$\Rightarrow{p}\approx\mathrm{1}.\mathrm{3328},\:{r}\approx\mathrm{0}.\mathrm{3446} \\ $$

Commented by mr W last updated on 30/Jun/24

Terms of Service

Privacy Policy

Contact: info@tinkutara.com