Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 208913 by efronzo1 last updated on 27/Jun/24

Answered by A5T last updated on 27/Jun/24

((sinβ)/6)=(1/(AC));((sin(60−β))/3)=(1/(AC))  ⇒((sin(60−β))/(sinβ))=(1/2)⇒β≈40.8934  ⇒sinβ≈0.654654; we can then find AC=(6/(sinβ))  AC≈9.165151

$$\frac{{sin}\beta}{\mathrm{6}}=\frac{\mathrm{1}}{{AC}};\frac{{sin}\left(\mathrm{60}−\beta\right)}{\mathrm{3}}=\frac{\mathrm{1}}{{AC}} \\ $$$$\Rightarrow\frac{{sin}\left(\mathrm{60}−\beta\right)}{{sin}\beta}=\frac{\mathrm{1}}{\mathrm{2}}\Rightarrow\beta\approx\mathrm{40}.\mathrm{8934} \\ $$$$\Rightarrow{sin}\beta\approx\mathrm{0}.\mathrm{654654};\:{we}\:{can}\:{then}\:{find}\:{AC}=\frac{\mathrm{6}}{{sin}\beta} \\ $$$${AC}\approx\mathrm{9}.\mathrm{165151} \\ $$

Answered by mr W last updated on 27/Jun/24

∠BCD=90°−α+90°−β=120°  BD^2 =6^2 +3^2 −2×3×6 cos 120°=63  AC=2R=((BD)/(sin ∠BCD))=((√(63))/(sin 120°))                    =2(√(21)) ≈9.165

$$\angle{BCD}=\mathrm{90}°−\alpha+\mathrm{90}°−\beta=\mathrm{120}° \\ $$$${BD}^{\mathrm{2}} =\mathrm{6}^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} −\mathrm{2}×\mathrm{3}×\mathrm{6}\:\mathrm{cos}\:\mathrm{120}°=\mathrm{63} \\ $$$${AC}=\mathrm{2}{R}=\frac{{BD}}{\mathrm{sin}\:\angle{BCD}}=\frac{\sqrt{\mathrm{63}}}{\mathrm{sin}\:\mathrm{120}°} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{2}\sqrt{\mathrm{21}}\:\approx\mathrm{9}.\mathrm{165} \\ $$

Answered by mr W last updated on 27/Jun/24

Commented by mr W last updated on 27/Jun/24

CE=2×6=12  DE=12+3=15  AD=((15)/( (√3)))=5(√3)  AC=(√((5(√3))^2 +3^2 ))=2(√(21))≈9.165

$${CE}=\mathrm{2}×\mathrm{6}=\mathrm{12} \\ $$$${DE}=\mathrm{12}+\mathrm{3}=\mathrm{15} \\ $$$${AD}=\frac{\mathrm{15}}{\:\sqrt{\mathrm{3}}}=\mathrm{5}\sqrt{\mathrm{3}} \\ $$$${AC}=\sqrt{\left(\mathrm{5}\sqrt{\mathrm{3}}\right)^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} }=\mathrm{2}\sqrt{\mathrm{21}}\approx\mathrm{9}.\mathrm{165} \\ $$

Commented by Tawa11 last updated on 27/Jun/24

weldone sirs

$$\mathrm{weldone}\:\mathrm{sirs} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com