Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 208782 by cherokeesay last updated on 22/Jun/24

Answered by mr W last updated on 23/Jun/24

Commented by cherokeesay last updated on 23/Jun/24

thank you master !

$${thank}\:{you}\:{master}\:! \\ $$

Commented by Tawa11 last updated on 23/Jun/24

Weldone sir.

$$\mathrm{Weldone}\:\mathrm{sir}. \\ $$

Commented by mr W last updated on 23/Jun/24

(r/R)=(√((25)/(49)))=(5/7) ⇒R=((7r)/5)  d=2r  (R−r)^2 +((√(15)))^2 =(3r−R)^2   25=4r^2    ⇒r=(5/2) ⇒R=(7/2)  (√(R^2 −b^2 ))+(√(r^2 −b^2 ))=3r−R  (√(R^2 −b^2 ))=4−(√(r^2 −b^2 ))  5=4(√(r^2 −b^2 ))  b^2 =r^2 −((25)/(16)) ⇒b=((5(√3))/4)  sin α_1 =(b/R)=((5(√3))/(14))  sin α_2 =(b/r)=((√3)/2) ⇒α_2 =(π/3)  green area:  (R^2 /4)(2α_1 −sin 2α_1 )+(r^2 /4)(2α_2 −sin 2α_2 )  =(7^2 /(4×4))(2sin^(−1) ((5(√3))/(14))−((2×5(√3)×11)/(14^2 )))+(5^2 /(4×4))(((2π)/3)−((√3)/2))  =((49)/8) sin^(−1) ((5(√3))/(14))+((25π)/(24))−((5(√3))/2)≈3.027

$$\frac{{r}}{{R}}=\sqrt{\frac{\mathrm{25}}{\mathrm{49}}}=\frac{\mathrm{5}}{\mathrm{7}}\:\Rightarrow{R}=\frac{\mathrm{7}{r}}{\mathrm{5}} \\ $$$${d}=\mathrm{2}{r} \\ $$$$\left({R}−{r}\right)^{\mathrm{2}} +\left(\sqrt{\mathrm{15}}\right)^{\mathrm{2}} =\left(\mathrm{3}{r}−{R}\right)^{\mathrm{2}} \\ $$$$\mathrm{25}=\mathrm{4}{r}^{\mathrm{2}} \: \\ $$$$\Rightarrow{r}=\frac{\mathrm{5}}{\mathrm{2}}\:\Rightarrow{R}=\frac{\mathrm{7}}{\mathrm{2}} \\ $$$$\sqrt{{R}^{\mathrm{2}} −{b}^{\mathrm{2}} }+\sqrt{{r}^{\mathrm{2}} −{b}^{\mathrm{2}} }=\mathrm{3}{r}−{R} \\ $$$$\sqrt{{R}^{\mathrm{2}} −{b}^{\mathrm{2}} }=\mathrm{4}−\sqrt{{r}^{\mathrm{2}} −{b}^{\mathrm{2}} } \\ $$$$\mathrm{5}=\mathrm{4}\sqrt{{r}^{\mathrm{2}} −{b}^{\mathrm{2}} } \\ $$$${b}^{\mathrm{2}} ={r}^{\mathrm{2}} −\frac{\mathrm{25}}{\mathrm{16}}\:\Rightarrow{b}=\frac{\mathrm{5}\sqrt{\mathrm{3}}}{\mathrm{4}} \\ $$$$\mathrm{sin}\:\alpha_{\mathrm{1}} =\frac{{b}}{{R}}=\frac{\mathrm{5}\sqrt{\mathrm{3}}}{\mathrm{14}} \\ $$$$\mathrm{sin}\:\alpha_{\mathrm{2}} =\frac{{b}}{{r}}=\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\:\Rightarrow\alpha_{\mathrm{2}} =\frac{\pi}{\mathrm{3}} \\ $$$${green}\:{area}: \\ $$$$\frac{{R}^{\mathrm{2}} }{\mathrm{4}}\left(\mathrm{2}\alpha_{\mathrm{1}} −\mathrm{sin}\:\mathrm{2}\alpha_{\mathrm{1}} \right)+\frac{{r}^{\mathrm{2}} }{\mathrm{4}}\left(\mathrm{2}\alpha_{\mathrm{2}} −\mathrm{sin}\:\mathrm{2}\alpha_{\mathrm{2}} \right) \\ $$$$=\frac{\mathrm{7}^{\mathrm{2}} }{\mathrm{4}×\mathrm{4}}\left(\mathrm{2sin}^{−\mathrm{1}} \frac{\mathrm{5}\sqrt{\mathrm{3}}}{\mathrm{14}}−\frac{\mathrm{2}×\mathrm{5}\sqrt{\mathrm{3}}×\mathrm{11}}{\mathrm{14}^{\mathrm{2}} }\right)+\frac{\mathrm{5}^{\mathrm{2}} }{\mathrm{4}×\mathrm{4}}\left(\frac{\mathrm{2}\pi}{\mathrm{3}}−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right) \\ $$$$=\frac{\mathrm{49}}{\mathrm{8}}\:\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{5}\sqrt{\mathrm{3}}}{\mathrm{14}}+\frac{\mathrm{25}\pi}{\mathrm{24}}−\frac{\mathrm{5}\sqrt{\mathrm{3}}}{\mathrm{2}}\approx\mathrm{3}.\mathrm{027} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com