Question and Answers Forum

All Questions      Topic List

Matrices and Determinants Questions

Previous in All Question      Next in All Question      

Previous in Matrices and Determinants      Next in Matrices and Determinants      

Question Number 208624 by vipin last updated on 19/Jun/24

Answered by Berbere last updated on 19/Jun/24

(1/(cosec^− (−(√2))))=sin^(−1) (−(1/( (√2))))=−(π/4)  f(x).tan^(−1) ((((√(1+x))−(√(1−x)))/( (√(1+x))+(√(1−x)))))=tan^(−1) (((1−(√((1−x)/(1+x))))/(1+(√((1−x)/(1+x))))))...E  g(y)=tan^(−1) (((1−y)/(1+y)))=(π/4)−tan^(−1) (y)...  prof  g′(y)=((−2)/((1+y)^2 )).(1/(1+(((1−y)/(1+y)))^2 ))=−(1/(1+y^2 ))  g(y)=−tan^(−1) (y)+(π/4)  f(x)=−tan^(−1) ((√((1−x)/(1+x))))+(π/4)  x=cos(a)⇒(√((1−x)/(1+x)))=∣tan ((a/2))∣;a∈[0,π]  f(x)=(π/4)−(a/2)=(π/4)−((cos^(−1) (x))/2)

$$\frac{\mathrm{1}}{{cosec}^{−} \left(−\sqrt{\mathrm{2}}\right)}=\mathrm{sin}^{−\mathrm{1}} \left(−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\right)=−\frac{\pi}{\mathrm{4}} \\ $$$${f}\left({x}\right).\mathrm{tan}^{−\mathrm{1}} \left(\frac{\sqrt{\mathrm{1}+{x}}−\sqrt{\mathrm{1}−{x}}}{\:\sqrt{\mathrm{1}+{x}}+\sqrt{\mathrm{1}−{x}}}\right)=\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}−\sqrt{\frac{\mathrm{1}−{x}}{\mathrm{1}+{x}}}}{\mathrm{1}+\sqrt{\frac{\mathrm{1}−{x}}{\mathrm{1}+{x}}}}\right)...{E} \\ $$$${g}\left({y}\right)=\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}−{y}}{\mathrm{1}+{y}}\right)=\frac{\pi}{\mathrm{4}}−\mathrm{tan}^{−\mathrm{1}} \left({y}\right)... \\ $$$${prof}\:\:{g}'\left({y}\right)=\frac{−\mathrm{2}}{\left(\mathrm{1}+{y}\right)^{\mathrm{2}} }.\frac{\mathrm{1}}{\mathrm{1}+\left(\frac{\mathrm{1}−{y}}{\mathrm{1}+{y}}\right)^{\mathrm{2}} }=−\frac{\mathrm{1}}{\mathrm{1}+{y}^{\mathrm{2}} } \\ $$$${g}\left({y}\right)=−\mathrm{tan}^{−\mathrm{1}} \left({y}\right)+\frac{\pi}{\mathrm{4}} \\ $$$${f}\left({x}\right)=−\mathrm{tan}^{−\mathrm{1}} \left(\sqrt{\frac{\mathrm{1}−{x}}{\mathrm{1}+{x}}}\right)+\frac{\pi}{\mathrm{4}} \\ $$$${x}={cos}\left({a}\right)\Rightarrow\sqrt{\frac{\mathrm{1}−{x}}{\mathrm{1}+{x}}}=\mid\mathrm{tan}\:\left(\frac{{a}}{\mathrm{2}}\right)\mid;{a}\in\left[\mathrm{0},\pi\right] \\ $$$${f}\left({x}\right)=\frac{\pi}{\mathrm{4}}−\frac{{a}}{\mathrm{2}}=\frac{\pi}{\mathrm{4}}−\frac{\mathrm{cos}^{−\mathrm{1}} \left({x}\right)}{\mathrm{2}} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com