Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 208553 by efronzo1 last updated on 18/Jun/24

$$\:\:\:\cancel{ } \\ $$

Answered by Frix last updated on 18/Jun/24

x=u−v∧y=u+v  z=2(u^2 −v^2 +u)  3u^2 +v^2 =1 ⇒ v^2 =1−3u^2   z=2(4u^2 +u−1)  v∈R ⇒ −((√3)/3)≤u≤((√3)/3)  ⇒ ((2−2(√3))/3)≤z≤((2+2(√3))/3)  BUT  z′=16u+2=0 ⇒ u=−(1/8) ∧ z′′=16>0  ⇒ min(z)=−((17)/8)  ⇒ −((17)/8)≤f(x, y)≤((2+2(√3))/3)

$${x}={u}−{v}\wedge{y}={u}+{v} \\ $$$${z}=\mathrm{2}\left({u}^{\mathrm{2}} −{v}^{\mathrm{2}} +{u}\right) \\ $$$$\mathrm{3}{u}^{\mathrm{2}} +{v}^{\mathrm{2}} =\mathrm{1}\:\Rightarrow\:{v}^{\mathrm{2}} =\mathrm{1}−\mathrm{3}{u}^{\mathrm{2}} \\ $$$${z}=\mathrm{2}\left(\mathrm{4}{u}^{\mathrm{2}} +{u}−\mathrm{1}\right) \\ $$$${v}\in\mathbb{R}\:\Rightarrow\:−\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}\leqslant{u}\leqslant\frac{\sqrt{\mathrm{3}}}{\mathrm{3}} \\ $$$$\Rightarrow\:\frac{\mathrm{2}−\mathrm{2}\sqrt{\mathrm{3}}}{\mathrm{3}}\leqslant{z}\leqslant\frac{\mathrm{2}+\mathrm{2}\sqrt{\mathrm{3}}}{\mathrm{3}} \\ $$$$\mathrm{BUT} \\ $$$${z}'=\mathrm{16}{u}+\mathrm{2}=\mathrm{0}\:\Rightarrow\:{u}=−\frac{\mathrm{1}}{\mathrm{8}}\:\wedge\:{z}''=\mathrm{16}>\mathrm{0} \\ $$$$\Rightarrow\:\mathrm{min}\left({z}\right)=−\frac{\mathrm{17}}{\mathrm{8}} \\ $$$$\Rightarrow\:−\frac{\mathrm{17}}{\mathrm{8}}\leqslant{f}\left({x},\:{y}\right)\leqslant\frac{\mathrm{2}+\mathrm{2}\sqrt{\mathrm{3}}}{\mathrm{3}} \\ $$

Commented by efronzo1 last updated on 18/Jun/24

yes min value is −((17)/8)

$$\mathrm{yes}\:\mathrm{min}\:\mathrm{value}\:\mathrm{is}\:−\frac{\mathrm{17}}{\mathrm{8}} \\ $$

Answered by A5T last updated on 18/Jun/24

Suppose y=f(x)  Then x^2 +y^2 +xy=1 ≡ x^2 +(f(x))^2 +xf(x)=1  (d/dx) of sides⇒2x+2f(x)f^′ (x)+xf^′ (x)+f(x)=0  ⇒f^′ (x)(2y+x)=−2x−y⇒f^′ (x)=((−2x−y)/(2y+x))...(i)    Similarly,x+2xy+y=x+2xf(x)+f(x)  (d/dx) of both sides⇒1+2xf′x+2f(x)+f^′ (x)=0  f^′ (x)=((−2y−1)/(2x+1))...(ii)  (i)=(ii)⇒f^′ (x)=((−2y−1)/(2x+1))=((−2x−y)/(2y+x))[x≠((−1)/2),2y≠−x]  ⇒4(x−y)(x+y)=−x+y=−(x−y)  ⇒y=x or 4(x+y)=−1  y=x⇒3x^2 =1⇒x=+_− ((√3)/3)=y⇒f(x,y)=((2+_− (√3))/3)  y=((−1)/4)−x⇒x=((+_− (√(61))−1)/8)⇒f(x,y)=((−17)/8)  Comparing values⇒max(f(x,y))=((2+(√3))/3)  and min(f(x,y))=((−17)/8)

$${Suppose}\:{y}={f}\left({x}\right) \\ $$$${Then}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{xy}=\mathrm{1}\:\equiv\:{x}^{\mathrm{2}} +\left({f}\left({x}\right)\right)^{\mathrm{2}} +{xf}\left({x}\right)=\mathrm{1} \\ $$$$\frac{{d}}{{dx}}\:{of}\:{sides}\Rightarrow\mathrm{2}{x}+\mathrm{2}{f}\left({x}\right){f}^{'} \left({x}\right)+{xf}^{'} \left({x}\right)+{f}\left({x}\right)=\mathrm{0} \\ $$$$\Rightarrow{f}^{'} \left({x}\right)\left(\mathrm{2}{y}+{x}\right)=−\mathrm{2}{x}−{y}\Rightarrow{f}^{'} \left({x}\right)=\frac{−\mathrm{2}{x}−{y}}{\mathrm{2}{y}+{x}}...\left({i}\right) \\ $$$$ \\ $$$${Similarly},{x}+\mathrm{2}{xy}+{y}={x}+\mathrm{2}{xf}\left({x}\right)+{f}\left({x}\right) \\ $$$$\frac{{d}}{{dx}}\:{of}\:{both}\:{sides}\Rightarrow\mathrm{1}+\mathrm{2}{xf}'{x}+\mathrm{2}{f}\left({x}\right)+{f}^{'} \left({x}\right)=\mathrm{0} \\ $$$${f}^{'} \left({x}\right)=\frac{−\mathrm{2}{y}−\mathrm{1}}{\mathrm{2}{x}+\mathrm{1}}...\left({ii}\right) \\ $$$$\left({i}\right)=\left({ii}\right)\Rightarrow{f}^{'} \left({x}\right)=\frac{−\mathrm{2}{y}−\mathrm{1}}{\mathrm{2}{x}+\mathrm{1}}=\frac{−\mathrm{2}{x}−{y}}{\mathrm{2}{y}+{x}}\left[{x}\neq\frac{−\mathrm{1}}{\mathrm{2}},\mathrm{2}{y}\neq−{x}\right] \\ $$$$\Rightarrow\mathrm{4}\left({x}−{y}\right)\left({x}+{y}\right)=−{x}+{y}=−\left({x}−{y}\right) \\ $$$$\Rightarrow{y}={x}\:{or}\:\mathrm{4}\left({x}+{y}\right)=−\mathrm{1} \\ $$$${y}={x}\Rightarrow\mathrm{3}{x}^{\mathrm{2}} =\mathrm{1}\Rightarrow{x}=\underset{−} {+}\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}={y}\Rightarrow{f}\left({x},{y}\right)=\frac{\mathrm{2}\underset{−} {+}\sqrt{\mathrm{3}}}{\mathrm{3}} \\ $$$${y}=\frac{−\mathrm{1}}{\mathrm{4}}−{x}\Rightarrow{x}=\frac{\underset{−} {+}\sqrt{\mathrm{61}}−\mathrm{1}}{\mathrm{8}}\Rightarrow{f}\left({x},{y}\right)=\frac{−\mathrm{17}}{\mathrm{8}} \\ $$$${Comparing}\:{values}\Rightarrow{max}\left({f}\left({x},{y}\right)\right)=\frac{\mathrm{2}+\sqrt{\mathrm{3}}}{\mathrm{3}} \\ $$$${and}\:{min}\left({f}\left({x},{y}\right)\right)=\frac{−\mathrm{17}}{\mathrm{8}} \\ $$

Answered by efronzo1 last updated on 18/Jun/24

Terms of Service

Privacy Policy

Contact: info@tinkutara.com