Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 207985 by efronzo1 last updated on 02/Jun/24

Answered by mr W last updated on 02/Jun/24

say AC=s=AB=CB  AP^2 =s×AM ⇒AP=(√(s×AM))  CP^2 =s×CN ⇒CP=(√(s×CN))  AP+CP=(√s)((√(AM))+(√(CN)))=s  ⇒s=((√(AM))+(√(CN)))^2 =(2(√2))^2 =8 ✓

$${say}\:{AC}={s}={AB}={CB} \\ $$$${AP}^{\mathrm{2}} ={s}×{AM}\:\Rightarrow{AP}=\sqrt{{s}×{AM}} \\ $$$${CP}^{\mathrm{2}} ={s}×{CN}\:\Rightarrow{CP}=\sqrt{{s}×{CN}} \\ $$$${AP}+{CP}=\sqrt{{s}}\left(\sqrt{{AM}}+\sqrt{{CN}}\right)={s} \\ $$$$\Rightarrow{s}=\left(\sqrt{{AM}}+\sqrt{{CN}}\right)^{\mathrm{2}} =\left(\mathrm{2}\sqrt{\mathrm{2}}\right)^{\mathrm{2}} =\mathrm{8}\:\checkmark \\ $$

Commented by Tawa11 last updated on 21/Jun/24

I saw the theorem here.  Thanks sir.

$$\mathrm{I}\:\mathrm{saw}\:\mathrm{the}\:\mathrm{theorem}\:\mathrm{here}. \\ $$$$\mathrm{Thanks}\:\mathrm{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com