Question and Answers Forum

All Questions      Topic List

Logic Questions

Previous in All Question      Next in All Question      

Previous in Logic      Next in Logic      

Question Number 207834 by efronzo1 last updated on 28/May/24

$$\:\:\:\:\underbrace{\:} \\ $$$$ \\ $$

Answered by Berbere last updated on 28/May/24

a^(505) =x;y=b^(505)   ⇔ { ((x+y.)),((max{x^4 +y^4 })) :}  x,y∈[0,1]^2 ⇒x^4 ≤x;y^4 <y⇒x^4 +y^4 ≤x+y=1  x=1,y=0 x^4 +y^4 =1  max(x^4 +y^4 )=1  min using (((x^4 +y^4 )/2))^(1/4) ≥((x+y)/2)=(1/2)  ⇒x^4 +y^4 ≥(1/8)(x=(1/2);y=(1/2))

$${a}^{\mathrm{505}} ={x};{y}={b}^{\mathrm{505}} \\ $$$$\Leftrightarrow\begin{cases}{{x}+{y}.}\\{{max}\left\{{x}^{\mathrm{4}} +{y}^{\mathrm{4}} \right\}}\end{cases} \\ $$$${x},{y}\in\left[\mathrm{0},\mathrm{1}\right]^{\mathrm{2}} \Rightarrow{x}^{\mathrm{4}} \leqslant{x};{y}^{\mathrm{4}} <{y}\Rightarrow{x}^{\mathrm{4}} +{y}^{\mathrm{4}} \leqslant{x}+{y}=\mathrm{1} \\ $$$${x}=\mathrm{1},{y}=\mathrm{0}\:{x}^{\mathrm{4}} +{y}^{\mathrm{4}} =\mathrm{1} \\ $$$${max}\left({x}^{\mathrm{4}} +{y}^{\mathrm{4}} \right)=\mathrm{1} \\ $$$${min}\:{using}\:\sqrt[{\mathrm{4}}]{\frac{{x}^{\mathrm{4}} +{y}^{\mathrm{4}} }{\mathrm{2}}}\geqslant\frac{{x}+{y}}{\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow{x}^{\mathrm{4}} +{y}^{\mathrm{4}} \geqslant\frac{\mathrm{1}}{\mathrm{8}}\left({x}=\frac{\mathrm{1}}{\mathrm{2}};{y}=\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com