Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 206848 by BaliramKumar last updated on 27/Apr/24

Commented by BaliramKumar last updated on 27/Apr/24

Answered by A5T last updated on 27/Apr/24

Let side of square=s  CE^2 =EF^2 +CF^2 ⇒∠EFC=90°⇒α+β=90°  cosα=(s/(CF=8))⇒s=8cosα;BF=8sinα  ((sinβ)/(AF=s−8sinα))=(1/(EF=6))⇒s−8sinα=6sinβ  ⇒8cosα−8sinα=6cosα⇒8sinα=2cosα  ⇒tanα=(1/4)⇒α=tan^(−1) ((1/4))  [ABCD]⇒s^2 =64cos^2 α=64cos^2 (tan^(−1) ((1/4)))=((1024)/(17))    tanα=(1/4);tanβ=((sin(90−α))/(cos(90−α)))=((cosα)/(sinα))=(1/(tanα))=4  ⇒tanα+tanβ=((17)/4)    AE=6cosβ=6sinα;DE=s−6sinα  =(√((1024)/(17)))−6sin(tan^(−1) ((1/4)))  ⇒[CDE]=((DE×DC)/2)  =((((√((1024)/(17)))−6sin(tan^(−1) ((1/4))))×(√((1024)/(17))))/2)  =((416)/(17))

$${Let}\:{side}\:{of}\:{square}={s} \\ $$$${CE}^{\mathrm{2}} ={EF}^{\mathrm{2}} +{CF}^{\mathrm{2}} \Rightarrow\angle{EFC}=\mathrm{90}°\Rightarrow\alpha+\beta=\mathrm{90}° \\ $$$${cos}\alpha=\frac{{s}}{{CF}=\mathrm{8}}\Rightarrow{s}=\mathrm{8}{cos}\alpha;{BF}=\mathrm{8}{sin}\alpha \\ $$$$\frac{{sin}\beta}{{AF}={s}−\mathrm{8}{sin}\alpha}=\frac{\mathrm{1}}{{EF}=\mathrm{6}}\Rightarrow{s}−\mathrm{8}{sin}\alpha=\mathrm{6}{sin}\beta \\ $$$$\Rightarrow\mathrm{8}{cos}\alpha−\mathrm{8}{sin}\alpha=\mathrm{6}{cos}\alpha\Rightarrow\mathrm{8}{sin}\alpha=\mathrm{2}{cos}\alpha \\ $$$$\Rightarrow{tan}\alpha=\frac{\mathrm{1}}{\mathrm{4}}\Rightarrow\alpha={tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{4}}\right) \\ $$$$\left[{ABCD}\right]\Rightarrow{s}^{\mathrm{2}} =\mathrm{64}{cos}^{\mathrm{2}} \alpha=\mathrm{64}{cos}^{\mathrm{2}} \left({tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{4}}\right)\right)=\frac{\mathrm{1024}}{\mathrm{17}} \\ $$$$ \\ $$$${tan}\alpha=\frac{\mathrm{1}}{\mathrm{4}};{tan}\beta=\frac{{sin}\left(\mathrm{90}−\alpha\right)}{{cos}\left(\mathrm{90}−\alpha\right)}=\frac{{cos}\alpha}{{sin}\alpha}=\frac{\mathrm{1}}{{tan}\alpha}=\mathrm{4} \\ $$$$\Rightarrow{tan}\alpha+{tan}\beta=\frac{\mathrm{17}}{\mathrm{4}} \\ $$$$ \\ $$$${AE}=\mathrm{6}{cos}\beta=\mathrm{6}{sin}\alpha;{DE}={s}−\mathrm{6}{sin}\alpha \\ $$$$=\sqrt{\frac{\mathrm{1024}}{\mathrm{17}}}−\mathrm{6}{sin}\left({tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{4}}\right)\right) \\ $$$$\Rightarrow\left[{CDE}\right]=\frac{{DE}×{DC}}{\mathrm{2}} \\ $$$$=\frac{\left(\sqrt{\frac{\mathrm{1024}}{\mathrm{17}}}−\mathrm{6}{sin}\left({tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{4}}\right)\right)\right)×\sqrt{\frac{\mathrm{1024}}{\mathrm{17}}}}{\mathrm{2}} \\ $$$$=\frac{\mathrm{416}}{\mathrm{17}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com