Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 206783 by BaliramKumar last updated on 25/Apr/24

Commented by BaliramKumar last updated on 25/Apr/24

i find 20

$$\mathrm{i}\:\mathrm{find}\:\mathrm{20} \\ $$

Answered by Rasheed.Sindhi last updated on 25/Apr/24

let along the length are m squares  & along the width are n squares.  Side of a square=((4.25)/m)=((3.4)/n)  ⇒(m/n)=((4.25)/(3.4))=((425)/(340))=(5/4) (∵ m,n∈N)  m_(min) =5,n_(min) =4  Number of squares along length  =5  Number of squares along width  =4  Total number(least) of squares=20  When the number of squares  is least the area of square is largest.

$${let}\:{along}\:{the}\:{length}\:{are}\:{m}\:{squares} \\ $$$$\&\:{along}\:{the}\:{width}\:{are}\:{n}\:{squares}. \\ $$$${Side}\:{of}\:{a}\:{square}=\frac{\mathrm{4}.\mathrm{25}}{{m}}=\frac{\mathrm{3}.\mathrm{4}}{{n}} \\ $$$$\Rightarrow\frac{{m}}{{n}}=\frac{\mathrm{4}.\mathrm{25}}{\mathrm{3}.\mathrm{4}}=\frac{\mathrm{425}}{\mathrm{340}}=\frac{\mathrm{5}}{\mathrm{4}}\:\left(\because\:{m},{n}\in\mathbb{N}\right) \\ $$$${m}_{\mathrm{min}} =\mathrm{5},{n}_{\mathrm{min}} =\mathrm{4} \\ $$$${Number}\:{of}\:{squares}\:{along}\:{length} \\ $$$$=\mathrm{5} \\ $$$${Number}\:{of}\:{squares}\:{along}\:{width} \\ $$$$=\mathrm{4} \\ $$$$\mathcal{T}{otal}\:{number}\left({least}\right)\:{of}\:{squares}=\mathrm{20} \\ $$$${When}\:{the}\:{number}\:{of}\:{squares} \\ $$$${is}\:{least}\:{the}\:{area}\:{of}\:{square}\:{is}\:{largest}. \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com