Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 206364 by Skabetix last updated on 12/Apr/24

Answered by TonyCWX08 last updated on 13/Apr/24

I only know  e^(πi) =−1  ∫_(−∞) ^∞ ((sin (x))/x) dx = π  lim_(n→∞) (1+(1/n))^n = e  The last one is a bit hard...

$${I}\:{only}\:{know} \\ $$$${e}^{\pi{i}} =−\mathrm{1} \\ $$$$\underset{−\infty} {\overset{\infty} {\int}}\frac{\mathrm{sin}\:\left({x}\right)}{{x}}\:{dx}\:=\:\pi \\ $$$${lim}_{{n}\rightarrow\infty} \left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)^{{n}} =\:{e} \\ $$$${The}\:{last}\:{one}\:{is}\:{a}\:{bit}\:{hard}... \\ $$

Answered by Berbere last updated on 13/Apr/24

∫_(−π) ^π e^(1/(tan(x))) dx≥∫_0 ^(π/2) e^(1/(tan(x))) dx=∫_0 ^∞ e^(1/y) (dy/(1+y^2 ))=∫_0 ^∞ (y^2 /(1+y^2 ))e^y dy  >∫_0 ^∞ (y^2 /(1+y^2 ))dy=[y−tan^(−1) (y)]_0 ^∞ =∞ diverge

$$\int_{−\pi} ^{\pi} {e}^{\frac{\mathrm{1}}{{tan}\left({x}\right)}} {dx}\geqslant\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {e}^{\frac{\mathrm{1}}{{tan}\left({x}\right)}} {dx}=\int_{\mathrm{0}} ^{\infty} {e}^{\frac{\mathrm{1}}{{y}}} \frac{{dy}}{\mathrm{1}+{y}^{\mathrm{2}} }=\int_{\mathrm{0}} ^{\infty} \frac{{y}^{\mathrm{2}} }{\mathrm{1}+{y}^{\mathrm{2}} }{e}^{{y}} {dy} \\ $$$$>\int_{\mathrm{0}} ^{\infty} \frac{{y}^{\mathrm{2}} }{\mathrm{1}+{y}^{\mathrm{2}} }{dy}=\left[{y}−\mathrm{tan}^{−\mathrm{1}} \left({y}\right)\right]_{\mathrm{0}} ^{\infty} =\infty\:{diverge} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com