Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 205880 by cortano12 last updated on 01/Apr/24

Commented by cortano12 last updated on 01/Apr/24

$$\:\underbrace{ } \\ $$

Answered by mr W last updated on 02/Apr/24

Commented by mr W last updated on 02/Apr/24

Δ_(BCE) =((square)/4)=((12^2 )/4)=36  ((EF)/(FB))=((EC)/(AB))=(1/2) ⇒((EF)/(EB))=(1/3)  A_1 =(1/3)Δ_(BCE)   ΔBGH∼ΔBCE  ((BH)/(BE))=(1/( (√(1^2 +2^2 ))))=(1/( (√5)))  A_2 =((1/( (√5))))^2 Δ_(BCE) =(1/5)Δ_(BCE)   shaded A_3 =(1−(1/3)−(1/5))Δ_(BCE) =(7/(15))Δ_(BCE)                         =(7/(15))×36=((84)/5)=16.8 ✓

$$\Delta_{{BCE}} =\frac{{square}}{\mathrm{4}}=\frac{\mathrm{12}^{\mathrm{2}} }{\mathrm{4}}=\mathrm{36} \\ $$$$\frac{{EF}}{{FB}}=\frac{{EC}}{{AB}}=\frac{\mathrm{1}}{\mathrm{2}}\:\Rightarrow\frac{{EF}}{{EB}}=\frac{\mathrm{1}}{\mathrm{3}} \\ $$$${A}_{\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{3}}\Delta_{{BCE}} \\ $$$$\Delta{BGH}\sim\Delta{BCE} \\ $$$$\frac{{BH}}{{BE}}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} }}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}} \\ $$$${A}_{\mathrm{2}} =\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\right)^{\mathrm{2}} \Delta_{{BCE}} =\frac{\mathrm{1}}{\mathrm{5}}\Delta_{{BCE}} \\ $$$${shaded}\:{A}_{\mathrm{3}} =\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{5}}\right)\Delta_{{BCE}} =\frac{\mathrm{7}}{\mathrm{15}}\Delta_{{BCE}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{7}}{\mathrm{15}}×\mathrm{36}=\frac{\mathrm{84}}{\mathrm{5}}=\mathrm{16}.\mathrm{8}\:\checkmark \\ $$

Answered by A5T last updated on 01/Apr/24

Commented by A5T last updated on 01/Apr/24

((sin(90−θ))/(y=FH))=((sin(90−β))/(BF)); ((sinβ)/(BF))=((sinθ)/x)  x=((BFsinθ)/(sinβ));(1/y)=((sin(90−β))/(BFsin(90−θ)))⇒(x/y)=((tanθ)/(tanβ))=((2/1)/(1/2))=4  (((1/2)×4y×2z)/((1/2)×5y×3z))=(8/(15))=(([AGF])/([ACH]))⇒(8/(15))×36=[AGF]=19.2  ⇒[CGFH]=[ACH]−[AGF]=36−19.2=16.8

$$\frac{{sin}\left(\mathrm{90}−\theta\right)}{{y}={FH}}=\frac{{sin}\left(\mathrm{90}−\beta\right)}{{BF}};\:\frac{{sin}\beta}{{BF}}=\frac{{sin}\theta}{{x}} \\ $$$${x}=\frac{{BFsin}\theta}{{sin}\beta};\frac{\mathrm{1}}{{y}}=\frac{{sin}\left(\mathrm{90}−\beta\right)}{{BFsin}\left(\mathrm{90}−\theta\right)}\Rightarrow\frac{{x}}{{y}}=\frac{{tan}\theta}{{tan}\beta}=\frac{\frac{\mathrm{2}}{\mathrm{1}}}{\frac{\mathrm{1}}{\mathrm{2}}}=\mathrm{4} \\ $$$$\frac{\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{4}{y}×\mathrm{2}{z}}{\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{5}{y}×\mathrm{3}{z}}=\frac{\mathrm{8}}{\mathrm{15}}=\frac{\left[{AGF}\right]}{\left[{ACH}\right]}\Rightarrow\frac{\mathrm{8}}{\mathrm{15}}×\mathrm{36}=\left[{AGF}\right]=\mathrm{19}.\mathrm{2} \\ $$$$\Rightarrow\left[{CGFH}\right]=\left[{ACH}\right]−\left[{AGF}\right]=\mathrm{36}−\mathrm{19}.\mathrm{2}=\mathrm{16}.\mathrm{8} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com