Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 205360 by Davidtim last updated on 18/Mar/24

Answered by A5T last updated on 18/Mar/24

Commented by A5T last updated on 19/Mar/24

FE=EG;EB=(√(4^2 +(3−FE)^2 ))  ∠FEG=180-θ⇒∠FOG=θ (since OFEG is cyclic)  ⇒cosθ=((3−FE)/( (√(25−6FE+FE^2 ))))  FG^2 =2FE^2 (1−cos(180−θ))=2FE^2 (1+cosθ)  FG^2 =1+1−2cosθ  ⇒2−2cosθ=2FE^2 (1+cosθ)⇒1−cosθ=FE^2 +FE^2 cosθ  ⇒1−FE^2 =cosθ(1+FE^2 )⇒cosθ=((1−FE^2 )/(1+FE^2 ))  ⇒((1−FE^2 )/(1+FE^2 ))=((3−FE)/( (√(25−6FE+FE^2 ))))⇒FE=(((√(17))−3)/2)=EG  AO=(√(3^2 +1^2 ))=(√(10 ))∧ sinDAO=((√(10))/(10))=cos(90−DAO)  OB^2 =AO^2 +AB^2 −2AO×ABcos(90−DAO)  ⇒OB^2 =10+16−2×4=18⇒OB=3(√2)  ⇒GB=(√(OB^2 −OG^2 ))=(√(18−1))=(√(17))  ⇒BE=EG+BG=((3(√(17))−3)/2)⇒BE^2 =((162−18(√(17)))/4)  ⇒EC=(√(BE^2 −BC^2 ))=(√((98−18(√(17)))/4))=((√(98−18(√(17))))/2)  ⇒Yellow Area=((EC×BC)/2)=(√(98−18(√(17)))) sq. units

$${FE}={EG};{EB}=\sqrt{\mathrm{4}^{\mathrm{2}} +\left(\mathrm{3}−{FE}\right)^{\mathrm{2}} } \\ $$$$\angle{FEG}=\mathrm{180}-\theta\Rightarrow\angle{FOG}=\theta\:\left({since}\:{OFEG}\:{is}\:{cyclic}\right) \\ $$$$\Rightarrow{cos}\theta=\frac{\mathrm{3}−{FE}}{\:\sqrt{\mathrm{25}−\mathrm{6}{FE}+{FE}^{\mathrm{2}} }} \\ $$$${FG}^{\mathrm{2}} =\mathrm{2}{FE}^{\mathrm{2}} \left(\mathrm{1}−{cos}\left(\mathrm{180}−\theta\right)\right)=\mathrm{2}{FE}^{\mathrm{2}} \left(\mathrm{1}+{cos}\theta\right) \\ $$$${FG}^{\mathrm{2}} =\mathrm{1}+\mathrm{1}−\mathrm{2}{cos}\theta \\ $$$$\Rightarrow\mathrm{2}−\mathrm{2}{cos}\theta=\mathrm{2}{FE}^{\mathrm{2}} \left(\mathrm{1}+{cos}\theta\right)\Rightarrow\mathrm{1}−{cos}\theta={FE}^{\mathrm{2}} +{FE}^{\mathrm{2}} {cos}\theta \\ $$$$\Rightarrow\mathrm{1}−{FE}^{\mathrm{2}} ={cos}\theta\left(\mathrm{1}+{FE}^{\mathrm{2}} \right)\Rightarrow{cos}\theta=\frac{\mathrm{1}−{FE}^{\mathrm{2}} }{\mathrm{1}+{FE}^{\mathrm{2}} } \\ $$$$\Rightarrow\frac{\mathrm{1}−{FE}^{\mathrm{2}} }{\mathrm{1}+{FE}^{\mathrm{2}} }=\frac{\mathrm{3}−{FE}}{\:\sqrt{\mathrm{25}−\mathrm{6}{FE}+{FE}^{\mathrm{2}} }}\Rightarrow{FE}=\frac{\sqrt{\mathrm{17}}−\mathrm{3}}{\mathrm{2}}={EG} \\ $$$${AO}=\sqrt{\mathrm{3}^{\mathrm{2}} +\mathrm{1}^{\mathrm{2}} }=\sqrt{\mathrm{10}\:}\wedge\:{sinDAO}=\frac{\sqrt{\mathrm{10}}}{\mathrm{10}}={cos}\left(\mathrm{90}−{DAO}\right) \\ $$$${OB}^{\mathrm{2}} ={AO}^{\mathrm{2}} +{AB}^{\mathrm{2}} −\mathrm{2}{AO}×{ABcos}\left(\mathrm{90}−{DAO}\right) \\ $$$$\Rightarrow{OB}^{\mathrm{2}} =\mathrm{10}+\mathrm{16}−\mathrm{2}×\mathrm{4}=\mathrm{18}\Rightarrow{OB}=\mathrm{3}\sqrt{\mathrm{2}} \\ $$$$\Rightarrow{GB}=\sqrt{{OB}^{\mathrm{2}} −{OG}^{\mathrm{2}} }=\sqrt{\mathrm{18}−\mathrm{1}}=\sqrt{\mathrm{17}} \\ $$$$\Rightarrow{BE}={EG}+{BG}=\frac{\mathrm{3}\sqrt{\mathrm{17}}−\mathrm{3}}{\mathrm{2}}\Rightarrow{BE}^{\mathrm{2}} =\frac{\mathrm{162}−\mathrm{18}\sqrt{\mathrm{17}}}{\mathrm{4}} \\ $$$$\Rightarrow{EC}=\sqrt{{BE}^{\mathrm{2}} −{BC}^{\mathrm{2}} }=\sqrt{\frac{\mathrm{98}−\mathrm{18}\sqrt{\mathrm{17}}}{\mathrm{4}}}=\frac{\sqrt{\mathrm{98}−\mathrm{18}\sqrt{\mathrm{17}}}}{\mathrm{2}} \\ $$$$\Rightarrow{Yellow}\:{Area}=\frac{{EC}×{BC}}{\mathrm{2}}=\sqrt{\mathrm{98}−\mathrm{18}\sqrt{\mathrm{17}}}\:{sq}.\:{units} \\ $$

Commented by Davidtim last updated on 19/Mar/24

didn′t you find a short method without it?

$${didn}'{t}\:{you}\:{find}\:{a}\:{short}\:{method}\:{without}\:{it}? \\ $$

Commented by A5T last updated on 19/Mar/24

No, but there could be. Is the answer correct?

$${No},\:{but}\:{there}\:{could}\:{be}.\:{Is}\:{the}\:{answer}\:{correct}? \\ $$

Commented by mr W last updated on 19/Mar/24

(√(98−18(√(17))))=9−(√(17))

$$\sqrt{\mathrm{98}−\mathrm{18}\sqrt{\mathrm{17}}}=\mathrm{9}−\sqrt{\mathrm{17}} \\ $$

Commented by A5T last updated on 19/Mar/24

Yea✓

$${Yea}\checkmark \\ $$

Answered by mr W last updated on 20/Mar/24

Commented by mr W last updated on 19/Mar/24

y=((x/2)/(4−x/2))×1=(x/(8−x))  (1/2)×2×(x/2)=(1/2)×(2+(x/2)+(√(2^2 +((x/2))^2 )))×((x/(8−x)))  6−((3x)/2)=(√(4+(x^2 /4)))  36−18x+((9x^2 )/4)=4+(x^2 /4)  x^2 −9x+16=0  ⇒x=((9−(√(17)))/2)  yellow area=((4×x)/2)=9−(√(17))

$${y}=\frac{{x}/\mathrm{2}}{\mathrm{4}−{x}/\mathrm{2}}×\mathrm{1}=\frac{{x}}{\mathrm{8}−{x}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{2}×\frac{{x}}{\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{2}}×\left(\mathrm{2}+\frac{{x}}{\mathrm{2}}+\sqrt{\mathrm{2}^{\mathrm{2}} +\left(\frac{{x}}{\mathrm{2}}\right)^{\mathrm{2}} }\right)×\left(\frac{{x}}{\mathrm{8}−{x}}\right) \\ $$$$\mathrm{6}−\frac{\mathrm{3}{x}}{\mathrm{2}}=\sqrt{\mathrm{4}+\frac{{x}^{\mathrm{2}} }{\mathrm{4}}} \\ $$$$\mathrm{36}−\mathrm{18}{x}+\frac{\mathrm{9}{x}^{\mathrm{2}} }{\mathrm{4}}=\mathrm{4}+\frac{{x}^{\mathrm{2}} }{\mathrm{4}} \\ $$$${x}^{\mathrm{2}} −\mathrm{9}{x}+\mathrm{16}=\mathrm{0} \\ $$$$\Rightarrow{x}=\frac{\mathrm{9}−\sqrt{\mathrm{17}}}{\mathrm{2}} \\ $$$${yellow}\:{area}=\frac{\mathrm{4}×{x}}{\mathrm{2}}=\mathrm{9}−\sqrt{\mathrm{17}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com