Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 205237 by universe last updated on 13/Mar/24

Answered by Berbere last updated on 13/Mar/24

n^2 +x^2 ≥n^2   (x/(1+x))≤1⇒((nxtan^(−1) (x))/((1+x)(n^2 +x^2 )))≤n.1.((tan^(−1) (x))/(n^2 +x^2 ))=n((tan^(−1) (x))/(n^2 +x^2 ))  ⇒∫_0 ^∞ ((nxtan^(−1) (x))/((1+x)(n^2 +x^2 )))dx≤∫_0 ^∞ n((tan^(−1) (x))/(n^2 +x^2 ))≤((nπ)/2)∫_0 ^∞ (dx/(n^2 +x^2 ))  =((nπ)/2)[(1/n)tan^(−1) ((x/n))]_0 ^∞ =(π^2 /4)  we can exchange ∫ and lim  ⇒lim_(n→∞) ∫_0 ^∞ ((nxtan^(−1) (x))/((1+x)(n^2 +x^2 )))dx=∫_0 ^∞ lim_(n→∞) ((xtan^(−1) (x))/(1+x))(n/(n^2 +x^2 ))dx=0

$${n}^{\mathrm{2}} +{x}^{\mathrm{2}} \geqslant{n}^{\mathrm{2}} \\ $$$$\frac{{x}}{\mathrm{1}+{x}}\leqslant\mathrm{1}\Rightarrow\frac{{nx}\mathrm{tan}^{−\mathrm{1}} \left({x}\right)}{\left(\mathrm{1}+{x}\right)\left({n}^{\mathrm{2}} +{x}^{\mathrm{2}} \right)}\leqslant{n}.\mathrm{1}.\frac{\mathrm{tan}^{−\mathrm{1}} \left({x}\right)}{{n}^{\mathrm{2}} +{x}^{\mathrm{2}} }={n}\frac{\mathrm{tan}^{−\mathrm{1}} \left({x}\right)}{{n}^{\mathrm{2}} +{x}^{\mathrm{2}} } \\ $$$$\Rightarrow\int_{\mathrm{0}} ^{\infty} \frac{{nx}\mathrm{tan}^{−\mathrm{1}} \left({x}\right)}{\left(\mathrm{1}+{x}\right)\left({n}^{\mathrm{2}} +{x}^{\mathrm{2}} \right)}{dx}\leqslant\int_{\mathrm{0}} ^{\infty} {n}\frac{\mathrm{tan}^{−\mathrm{1}} \left({x}\right)}{{n}^{\mathrm{2}} +{x}^{\mathrm{2}} }\leqslant\frac{{n}\pi}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} \frac{{dx}}{{n}^{\mathrm{2}} +{x}^{\mathrm{2}} } \\ $$$$=\frac{{n}\pi}{\mathrm{2}}\left[\frac{\mathrm{1}}{{n}}\mathrm{tan}^{−\mathrm{1}} \left(\frac{{x}}{{n}}\right)\right]_{\mathrm{0}} ^{\infty} =\frac{\pi^{\mathrm{2}} }{\mathrm{4}} \\ $$$${we}\:{can}\:{exchange}\:\int\:{and}\:{lim} \\ $$$$\Rightarrow\underset{{n}\rightarrow\infty} {\mathrm{lim}}\int_{\mathrm{0}} ^{\infty} \frac{{nx}\mathrm{tan}^{−\mathrm{1}} \left({x}\right)}{\left(\mathrm{1}+{x}\right)\left({n}^{\mathrm{2}} +{x}^{\mathrm{2}} \right)}{dx}=\int_{\mathrm{0}} ^{\infty} \underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{{x}\mathrm{tan}^{−\mathrm{1}} \left({x}\right)}{\mathrm{1}+{x}}\frac{{n}}{{n}^{\mathrm{2}} +{x}^{\mathrm{2}} }{dx}=\mathrm{0} \\ $$

Commented by universe last updated on 13/Mar/24

thanks sir

$${thanks}\:{sir} \\ $$

Commented by Berbere last updated on 13/Mar/24

withe Pleasur

$${withe}\:{Pleasur} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com