Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 204171 by cherokeesay last updated on 07/Feb/24

Commented by deleteduser1 last updated on 07/Feb/24

Are those points on the circle the vertices of a  regular hexagon? Is H the midpoint of Γ and A?

$${Are}\:{those}\:{points}\:{on}\:{the}\:{circle}\:{the}\:{vertices}\:{of}\:{a} \\ $$$${regular}\:{hexagon}?\:{Is}\:{H}\:{the}\:{midpoint}\:{of}\:\Gamma\:{and}\:{A}? \\ $$

Answered by deleteduser1 last updated on 07/Feb/24

If comment above is true,then ZA=4,  ΓA^2 =4^2 +4^2 −2×4^2 cos120=3×4^2 ⇒ΓA=4(√3)  ⇒HA=2(√3)⇒[HAZ]=(1/2)×2(√3)×4=4(√3)

$${If}\:{comment}\:{above}\:{is}\:{true},{then}\:{ZA}=\mathrm{4}, \\ $$$$\Gamma{A}^{\mathrm{2}} =\mathrm{4}^{\mathrm{2}} +\mathrm{4}^{\mathrm{2}} −\mathrm{2}×\mathrm{4}^{\mathrm{2}} {cos}\mathrm{120}=\mathrm{3}×\mathrm{4}^{\mathrm{2}} \Rightarrow\Gamma{A}=\mathrm{4}\sqrt{\mathrm{3}} \\ $$$$\Rightarrow{HA}=\mathrm{2}\sqrt{\mathrm{3}}\Rightarrow\left[{HAZ}\right]=\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{2}\sqrt{\mathrm{3}}×\mathrm{4}=\mathrm{4}\sqrt{\mathrm{3}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com