Question Number 204145 by cortano12 last updated on 07/Feb/24 | ||
![]() | ||
Answered by deleteduser1 last updated on 07/Feb/24 | ||
![]() | ||
Commented by cortano12 last updated on 08/Feb/24 | ||
![]() | ||
$$\:\mathrm{i}\:\mathrm{got}\:\mathrm{x}=\mathrm{40}° \\ $$ | ||
Commented by deleteduser1 last updated on 07/Feb/24 | ||
![]() | ||
$$\frac{{sin}\left(\mathrm{20}°\right)}{{DC}}=\frac{{sin}\left(\mathrm{110}°\right)}{{BC}}\Rightarrow{BF}={DCcot}\left(\mathrm{20}°\right)−{CF} \\ $$$$\frac{{sin}\left(\mathrm{110}−{x}\right)}{{CF}}=\frac{{sin}\left(\mathrm{20}+{x}\right)}{{DC}}\Rightarrow{CF}=\frac{{DCsin}\left(\mathrm{110}−{x}\right)}{{sin}\left(\mathrm{20}+{x}\right)} \\ $$$$\Rightarrow{BF}={DC}\left({cot}\mathrm{20}−\frac{{sin}\left(\mathrm{110}−{x}\right)}{{sin}\left(\mathrm{20}+{x}\right)}\right) \\ $$$$\frac{{sin}\left({x}\right)}{{BF}}=\frac{{sin}\left(\mathrm{20}\right)}{{DF}};\frac{{sin}\left(\mathrm{50}\right)}{{DF}}=\frac{{sin}\left(\mathrm{20}+{x}\right)}{{DC}} \\ $$$$\Rightarrow{DF}=\frac{{DCsin}\left(\mathrm{50}\right)}{{sin}\left(\mathrm{20}+{x}\right)}\Rightarrow\frac{{sin}\left({x}\right)}{{BF}}=\frac{{sin}\left(\mathrm{20}\right){sin}\left(\mathrm{20}+{x}\right)}{{DCsin}\left(\mathrm{50}\right)} \\ $$$$\Rightarrow\frac{{sin}\left({x}\right){sin}\left(\mathrm{20}+{x}\right)}{{cot}\mathrm{20}{sin}\left(\mathrm{20}+{x}\right)−{sin}\left(\mathrm{110}−{x}\right)}=\frac{{sin}\left(\mathrm{20}\right){sin}\left(\mathrm{20}+{x}\right)}{{sin}\mathrm{50}} \\ $$$$\Rightarrow{x}=\mathrm{20}° \\ $$ | ||
Commented by deleteduser1 last updated on 08/Feb/24 | ||
![]() | ||
$${Your}\:{solution}? \\ $$ | ||
Commented by A5T last updated on 27/Aug/24 | ||
![]() | ||
$$\frac{{sin}\left(\mathrm{20}°\right)}{{DC}}=\frac{{sin}\left(\mathrm{110}°\right)}{{BC}}\Rightarrow{BF}={DCcot}\left(\mathrm{20}°\right)−{CF} \\ $$$$\frac{{sin}\left(\mathrm{110}−{x}\right)}{{CF}}=\frac{{sin}\left(\mathrm{20}+{x}\right)}{{DC}}\Rightarrow{CF}=\frac{{DCsin}\left(\mathrm{110}−{x}\right)}{{sin}\left(\mathrm{20}+{x}\right)} \\ $$$$\Rightarrow{BF}={DC}\left({cot}\mathrm{20}−\frac{{sin}\left(\mathrm{110}−{x}\right)}{{sin}\left(\mathrm{20}+{x}\right)}\right)...\left({i}\right) \\ $$$$\frac{{sin}\left({x}\right)}{{BF}}=\frac{{sin}\left(\mathrm{20}\right)}{{DF}};\frac{{sin}\left(\mathrm{50}\right)}{{DF}}=\frac{{sin}\left(\mathrm{20}+{x}\right)}{{DC}} \\ $$$$\Rightarrow{DF}=\frac{{DCsin}\left(\mathrm{50}\right)}{{sin}\left(\mathrm{20}+{x}\right)}\Rightarrow\frac{{sin}\left({x}\right)}{{BF}}=\frac{{sin}\left(\mathrm{20}\right){sin}\left(\mathrm{20}+{x}\right)}{{DCsin}\left(\mathrm{50}\right)} \\ $$$$\Rightarrow{BF}=\frac{{DCsin}\mathrm{50}{sinx}}{{sin}\mathrm{20}{sin}\left(\mathrm{20}+{x}\right)}...\left({ii}\right) \\ $$$$\left({i}\right)\&\left({ii}\right) \\ $$$$\Rightarrow{sin}\mathrm{50}{sinx}={sin}\left(\mathrm{20}+{x}\right){cos}\mathrm{20}−{sin}\left(\mathrm{110}−{x}\right){sin}\mathrm{20} \\ $$$$\Rightarrow{x}=\mathrm{40}° \\ $$ | ||