Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 203919 by Samuel12 last updated on 02/Feb/24

$$\:\: \\ $$

Answered by Mathspace last updated on 02/Feb/24

1=e^(2ikπ)   let z=re^(iθ)   z^5 =1 ⇔r^5 e^(i5θ) =e^(i2kπ) ⇔  r=1 and θ=((2kπ)/5)  so the roots are z_k =e^(i((2kπ)/5))   and k∈[[0,4]]  z_0 =1   , z_1 =e^((i2π)/5)   z_2 =e^(i((4π)/5)) =−e^(−((iπ)/5))      z_3 =e^(i((6π)/5))  =−e^((iπ)/5)   z_4 =e^(i((8π)/5)) =e^(i((10π−2π)/5)) =e^(−i((2π)/5))   e^((iπ)/5) =cos((π/5))+isin((π/5))  and cos((π/5))=((1+(√5))/4) .....

$$\mathrm{1}={e}^{\mathrm{2}{ik}\pi} \:\:{let}\:{z}={re}^{{i}\theta} \\ $$$${z}^{\mathrm{5}} =\mathrm{1}\:\Leftrightarrow{r}^{\mathrm{5}} {e}^{{i}\mathrm{5}\theta} ={e}^{{i}\mathrm{2}{k}\pi} \Leftrightarrow \\ $$$${r}=\mathrm{1}\:{and}\:\theta=\frac{\mathrm{2}{k}\pi}{\mathrm{5}} \\ $$$${so}\:{the}\:{roots}\:{are}\:{z}_{{k}} ={e}^{{i}\frac{\mathrm{2}{k}\pi}{\mathrm{5}}} \\ $$$${and}\:{k}\in\left[\left[\mathrm{0},\mathrm{4}\right]\right] \\ $$$${z}_{\mathrm{0}} =\mathrm{1}\:\:\:,\:{z}_{\mathrm{1}} ={e}^{\frac{{i}\mathrm{2}\pi}{\mathrm{5}}} \\ $$$${z}_{\mathrm{2}} ={e}^{{i}\frac{\mathrm{4}\pi}{\mathrm{5}}} =−{e}^{−\frac{{i}\pi}{\mathrm{5}}} \:\:\:\:\:{z}_{\mathrm{3}} ={e}^{{i}\frac{\mathrm{6}\pi}{\mathrm{5}}} \:=−{e}^{\frac{{i}\pi}{\mathrm{5}}} \\ $$$${z}_{\mathrm{4}} ={e}^{{i}\frac{\mathrm{8}\pi}{\mathrm{5}}} ={e}^{{i}\frac{\mathrm{10}\pi−\mathrm{2}\pi}{\mathrm{5}}} ={e}^{−{i}\frac{\mathrm{2}\pi}{\mathrm{5}}} \\ $$$${e}^{\frac{{i}\pi}{\mathrm{5}}} ={cos}\left(\frac{\pi}{\mathrm{5}}\right)+{isin}\left(\frac{\pi}{\mathrm{5}}\right) \\ $$$${and}\:{cos}\left(\frac{\pi}{\mathrm{5}}\right)=\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{4}}\:..... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com