Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 203747 by patrice last updated on 27/Jan/24

Answered by esmaeil last updated on 27/Jan/24

I=∫_0 ^(π/2) (x/(1+cosx))dx+∫_0 ^(π/2) ((sinx)/(1+cosx))dx  x=u→dx=du  (dx/(1+cosx))=dv→v=tan(x/2)  →I=xtan(x/2)−∫_0 ^(π/2) tan(x/2)dx+  ∫_0 ^(π/2) ((sinx)/(1+cosx))dx=  xtan(x/2)+2ln(cos(x/2))+ln(1+cosx)]_0 ^(π/2) =  (π/2)+2ln(((√2)/2))−ln2=(π/2)+ln(1/2)−ln2  =(π/2)−2ln2

$${I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{x}}{\mathrm{1}+{cosx}}{dx}+\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{sinx}}{\mathrm{1}+{cosx}}{dx} \\ $$$${x}={u}\rightarrow{dx}={du} \\ $$$$\frac{{dx}}{\mathrm{1}+{cosx}}={dv}\rightarrow{v}={tan}\frac{{x}}{\mathrm{2}} \\ $$$$\rightarrow{I}={xtan}\frac{{x}}{\mathrm{2}}−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {tan}\frac{{x}}{\mathrm{2}}{dx}+ \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{sinx}}{\mathrm{1}+{cosx}}{dx}= \\ $$$$\left.{xtan}\frac{{x}}{\mathrm{2}}+\mathrm{2}{ln}\left({cos}\frac{{x}}{\mathrm{2}}\right)+{ln}\left(\mathrm{1}+{cosx}\right)\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} = \\ $$$$\frac{\pi}{\mathrm{2}}+\mathrm{2}{ln}\left(\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\right)−{ln}\mathrm{2}=\frac{\pi}{\mathrm{2}}+{ln}\frac{\mathrm{1}}{\mathrm{2}}−{ln}\mathrm{2} \\ $$$$=\frac{\pi}{\mathrm{2}}−\mathrm{2}{ln}\mathrm{2} \\ $$$$ \\ $$

Answered by MathematicalUser2357 last updated on 28/Jan/24

I=(π/2)−2ln 2

$${I}=\frac{\pi}{\mathrm{2}}−\mathrm{2ln}\:\mathrm{2} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com