Question and Answers Forum

All Questions      Topic List

Electrostatics Questions

Previous in All Question      Next in All Question      

Previous in Electrostatics      Next in Electrostatics      

Question Number 203636 by ajfour last updated on 24/Jan/24

Commented by ajfour last updated on 24/Jan/24

Take string length s for question (1).

$${Take}\:{string}\:{length}\:\boldsymbol{{s}}\:{for}\:{question}\:\left(\mathrm{1}\right). \\ $$

Answered by mr W last updated on 24/Jan/24

Commented by mr W last updated on 27/Jan/24

F_x =((mgR)/( (√(s^2 −R^2 ))))  T=((mgs)/( (√(s^2 −R^2 ))))=((mg)/( (√(1−(R^2 /s^2 )))))  θ_k =((2πk)/n), k=1...n−1  ϕ=(π/2)−(θ_k /2)=(π/2)−((kπ)/n)  r_k =2R sin (θ_k /2)=2R sin ((kπ)/n)  F_k =((cq^2 )/r_k ^2 )=((cq^2 )/(4R^2  sin^2  ((kπ)/n)))  F_(k,x) =F_k cos ϕ=((cq^2 )/(4R^2  sin ((kπ)/n)))  F_x =Σ_(k=1) ^(n−1) F_(k,x) =((cq^2 )/(4R^2 ))Σ_(k=1) ^(n−1) (1/(sin ((kπ)/n)))=((mgR)/( (√(s^2 −R^2 ))))  (R^3 /( (√(s^2 −R^2 ))))=((cq^2 )/(4mg))Σ_(k=1) ^(n−1) (1/(sin ((kπ)/n)))=λ^2   with λ=(√(((cq^2 )/(4mg))Σ_(k=1) ^(n−1) (1/(sin ((kπ)/n)))))  R^6 +λ^4 R^2 −λ^4 s^2 =0  R^2 =((λ^4 ((√((s^4 /4)+(λ^4 /(27))))+(s^2 /2))))^(1/3) −((λ^4 ((√((s^4 /4)+(λ^4 /(27))))−(s^2 /2))))^(1/3)     special case: n=3  Σ_(k=1) ^(n−1) (1/(sin ((kπ)/n)))=(1/(sin (π/3)))+(1/(sin ((2π)/3)))=(4/( (√3)))  λ=(√(((cq^2 )/(4mg))×(4/( (√3)))))=(μ/( (√(√3)))) with μ=(√((cq^2 )/(mg)))  R^2 =(((μ^4 /3)((√((s^4 /4)+(μ^4 /(81))))+(s^2 /2))))^(1/3) −(((μ^4 /3)((√((s^4 /4)+(μ^4 /(81))))−(s^2 /2))))^(1/3)   (T/(mg))=(s/( (√(s^2 +(((μ^4 /3)((√((s^4 /4)+(μ^4 /(81))))−(s^2 /2))))^(1/3) −(((μ^4 /3)((√((s^4 /4)+(μ^4 /(81))))+(s^2 /2))))^(1/3) ))))

$${F}_{{x}} =\frac{{mgR}}{\:\sqrt{{s}^{\mathrm{2}} −{R}^{\mathrm{2}} }} \\ $$$${T}=\frac{{mgs}}{\:\sqrt{{s}^{\mathrm{2}} −{R}^{\mathrm{2}} }}=\frac{{mg}}{\:\sqrt{\mathrm{1}−\frac{{R}^{\mathrm{2}} }{{s}^{\mathrm{2}} }}} \\ $$$$\theta_{{k}} =\frac{\mathrm{2}\pi{k}}{{n}},\:{k}=\mathrm{1}...{n}−\mathrm{1} \\ $$$$\varphi=\frac{\pi}{\mathrm{2}}−\frac{\theta_{{k}} }{\mathrm{2}}=\frac{\pi}{\mathrm{2}}−\frac{{k}\pi}{{n}} \\ $$$${r}_{{k}} =\mathrm{2}{R}\:\mathrm{sin}\:\frac{\theta_{{k}} }{\mathrm{2}}=\mathrm{2}{R}\:\mathrm{sin}\:\frac{{k}\pi}{{n}} \\ $$$${F}_{{k}} =\frac{{cq}^{\mathrm{2}} }{{r}_{{k}} ^{\mathrm{2}} }=\frac{{cq}^{\mathrm{2}} }{\mathrm{4}{R}^{\mathrm{2}} \:\mathrm{sin}^{\mathrm{2}} \:\frac{{k}\pi}{{n}}} \\ $$$${F}_{{k},{x}} ={F}_{{k}} \mathrm{cos}\:\varphi=\frac{{cq}^{\mathrm{2}} }{\mathrm{4}{R}^{\mathrm{2}} \:\mathrm{sin}\:\frac{{k}\pi}{{n}}} \\ $$$${F}_{{x}} =\underset{{k}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\sum}}{F}_{{k},{x}} =\frac{{cq}^{\mathrm{2}} }{\mathrm{4}{R}^{\mathrm{2}} }\underset{{k}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\sum}}\frac{\mathrm{1}}{\mathrm{sin}\:\frac{{k}\pi}{{n}}}=\frac{{mgR}}{\:\sqrt{{s}^{\mathrm{2}} −{R}^{\mathrm{2}} }} \\ $$$$\frac{{R}^{\mathrm{3}} }{\:\sqrt{{s}^{\mathrm{2}} −{R}^{\mathrm{2}} }}=\frac{{cq}^{\mathrm{2}} }{\mathrm{4}{mg}}\underset{{k}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\sum}}\frac{\mathrm{1}}{\mathrm{sin}\:\frac{{k}\pi}{{n}}}=\lambda^{\mathrm{2}} \\ $$$${with}\:\lambda=\sqrt{\frac{{cq}^{\mathrm{2}} }{\mathrm{4}{mg}}\underset{{k}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\sum}}\frac{\mathrm{1}}{\mathrm{sin}\:\frac{{k}\pi}{{n}}}} \\ $$$${R}^{\mathrm{6}} +\lambda^{\mathrm{4}} {R}^{\mathrm{2}} −\lambda^{\mathrm{4}} {s}^{\mathrm{2}} =\mathrm{0} \\ $$$${R}^{\mathrm{2}} =\sqrt[{\mathrm{3}}]{\lambda^{\mathrm{4}} \left(\sqrt{\frac{{s}^{\mathrm{4}} }{\mathrm{4}}+\frac{\lambda^{\mathrm{4}} }{\mathrm{27}}}+\frac{{s}^{\mathrm{2}} }{\mathrm{2}}\right)}−\sqrt[{\mathrm{3}}]{\lambda^{\mathrm{4}} \left(\sqrt{\frac{{s}^{\mathrm{4}} }{\mathrm{4}}+\frac{\lambda^{\mathrm{4}} }{\mathrm{27}}}−\frac{{s}^{\mathrm{2}} }{\mathrm{2}}\right)} \\ $$$$ \\ $$$${special}\:{case}:\:{n}=\mathrm{3} \\ $$$$\underset{{k}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\sum}}\frac{\mathrm{1}}{\mathrm{sin}\:\frac{{k}\pi}{{n}}}=\frac{\mathrm{1}}{\mathrm{sin}\:\frac{\pi}{\mathrm{3}}}+\frac{\mathrm{1}}{\mathrm{sin}\:\frac{\mathrm{2}\pi}{\mathrm{3}}}=\frac{\mathrm{4}}{\:\sqrt{\mathrm{3}}} \\ $$$$\lambda=\sqrt{\frac{{cq}^{\mathrm{2}} }{\mathrm{4}{mg}}×\frac{\mathrm{4}}{\:\sqrt{\mathrm{3}}}}=\frac{\mu}{\:\sqrt{\sqrt{\mathrm{3}}}}\:{with}\:\mu=\sqrt{\frac{{cq}^{\mathrm{2}} }{{mg}}} \\ $$$${R}^{\mathrm{2}} =\sqrt[{\mathrm{3}}]{\frac{\mu^{\mathrm{4}} }{\mathrm{3}}\left(\sqrt{\frac{{s}^{\mathrm{4}} }{\mathrm{4}}+\frac{\mu^{\mathrm{4}} }{\mathrm{81}}}+\frac{{s}^{\mathrm{2}} }{\mathrm{2}}\right)}−\sqrt[{\mathrm{3}}]{\frac{\mu^{\mathrm{4}} }{\mathrm{3}}\left(\sqrt{\frac{{s}^{\mathrm{4}} }{\mathrm{4}}+\frac{\mu^{\mathrm{4}} }{\mathrm{81}}}−\frac{{s}^{\mathrm{2}} }{\mathrm{2}}\right)} \\ $$$$\frac{{T}}{{mg}}=\frac{{s}}{\:\sqrt{{s}^{\mathrm{2}} +\sqrt[{\mathrm{3}}]{\frac{\mu^{\mathrm{4}} }{\mathrm{3}}\left(\sqrt{\frac{{s}^{\mathrm{4}} }{\mathrm{4}}+\frac{\mu^{\mathrm{4}} }{\mathrm{81}}}−\frac{{s}^{\mathrm{2}} }{\mathrm{2}}\right)}−\sqrt[{\mathrm{3}}]{\frac{\mu^{\mathrm{4}} }{\mathrm{3}}\left(\sqrt{\frac{{s}^{\mathrm{4}} }{\mathrm{4}}+\frac{\mu^{\mathrm{4}} }{\mathrm{81}}}+\frac{{s}^{\mathrm{2}} }{\mathrm{2}}\right)}}} \\ $$

Commented by ajfour last updated on 24/Jan/24

utterly amazing Sir.

$${utterly}\:{amazing}\:{Sir}. \\ $$

Commented by mr W last updated on 25/Jan/24

thanks sir! the question 2 is much  harder. have you tried?

$${thanks}\:{sir}!\:{the}\:{question}\:\mathrm{2}\:{is}\:{much} \\ $$$${harder}.\:{have}\:{you}\:{tried}? \\ $$

Commented by ajfour last updated on 25/Jan/24

Thats why i havnt tried, but i m starting to think, few hours...

Commented by mr W last updated on 27/Jan/24

solution to question 2   see Q203726

$${solution}\:{to}\:{question}\:\mathrm{2}\: \\ $$$${see}\:{Q}\mathrm{203726} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com