Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 203625 by professorleiciano last updated on 23/Jan/24

Answered by esmaeil last updated on 23/Jan/24

1+(((sin^2 x+cos^2 x)^2 −2sin^2 xcos^2 x)/(sin^2 xcos^2 x))=3→  1=sin^2 2x→sin2x=±1=sin(±(π/2))  2x=kπ±(π/2)→ { ((2x=2kπ+(π/2))),((2x=2kπ+π−(π/2))) :}   { ((2x=2kπ−(π/2))),((2x=2kπ+((3π)/2))) :}  x=kπ±(π/4)   ,x=kπ+((3π)/4)

$$\mathrm{1}+\frac{\left({sin}^{\mathrm{2}} {x}+{cos}^{\mathrm{2}} {x}\right)^{\mathrm{2}} −\mathrm{2}{sin}^{\mathrm{2}} {xcos}^{\mathrm{2}} {x}}{{sin}^{\mathrm{2}} {xcos}^{\mathrm{2}} {x}}=\mathrm{3}\rightarrow \\ $$$$\mathrm{1}={sin}^{\mathrm{2}} \mathrm{2}{x}\rightarrow{sin}\mathrm{2}{x}=\pm\mathrm{1}={sin}\left(\pm\frac{\pi}{\mathrm{2}}\right) \\ $$$$\mathrm{2}{x}={k}\pi\pm\frac{\pi}{\mathrm{2}}\rightarrow\begin{cases}{\mathrm{2}{x}=\mathrm{2}{k}\pi+\frac{\pi}{\mathrm{2}}}\\{\mathrm{2}{x}=\mathrm{2}{k}\pi+\pi−\frac{\pi}{\mathrm{2}}}\end{cases} \\ $$$$\begin{cases}{\mathrm{2}{x}=\mathrm{2}{k}\pi−\frac{\pi}{\mathrm{2}}}\\{\mathrm{2}{x}=\mathrm{2}{k}\pi+\frac{\mathrm{3}\pi}{\mathrm{2}}}\end{cases} \\ $$$${x}={k}\pi\pm\frac{\pi}{\mathrm{4}}\:\:\:,{x}={k}\pi+\frac{\mathrm{3}\pi}{\mathrm{4}} \\ $$$$ \\ $$

Commented by professorleiciano last updated on 24/Jan/24

Sua resposta está totalmente errada.

Answered by professorleiciano last updated on 23/Jan/24

Commented by esmaeil last updated on 23/Jan/24

(secx)^2 =^(!!!!!(why)) secx^2

$$\left({secx}\right)^{\mathrm{2}} \overset{!!!!!\left({why}\right)} {=}{secx}^{\mathrm{2}} \\ $$$$ \\ $$

Commented by esmaeil last updated on 24/Jan/24

why do you only answer your own  question.your answer is also wrong.

$${why}\:{do}\:{you}\:{only}\:{answer}\:{your}\:{own} \\ $$$${question}.{your}\:{answer}\:{is}\:{also}\:{wrong}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com