Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 203180 by Calculusboy last updated on 11/Jan/24

Answered by Rana_Ranino last updated on 11/Jan/24

using arcsin^2 (z)=(1/2)Σ_(n=1) ^∞ ((4^n z^(2n) )/(n^2  (((2n)),(( n)) )))  take z=(1/2)   Σ_(n=1) ^∞ ((4^n z^(2n) )/(n^2  (((2n)),(( n)) )))=2arcsin^2 ((1/2))=2((π/6))^2 =(π^2 /(18))

$$\mathrm{using}\:\mathrm{arcsin}^{\mathrm{2}} \left(\mathrm{z}\right)=\frac{\mathrm{1}}{\mathrm{2}}\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{4}^{\mathrm{n}} \mathrm{z}^{\mathrm{2n}} }{\mathrm{n}^{\mathrm{2}} \begin{pmatrix}{\mathrm{2n}}\\{\:\mathrm{n}}\end{pmatrix}}\:\:\mathrm{take}\:\mathrm{z}=\frac{\mathrm{1}}{\mathrm{2}}\: \\ $$$$\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{4}^{\mathrm{n}} \mathrm{z}^{\mathrm{2n}} }{\mathrm{n}^{\mathrm{2}} \begin{pmatrix}{\mathrm{2n}}\\{\:\mathrm{n}}\end{pmatrix}}=\mathrm{2arcsin}^{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{2}}\right)=\mathrm{2}\left(\frac{\pi}{\mathrm{6}}\right)^{\mathrm{2}} =\frac{\pi^{\mathrm{2}} }{\mathrm{18}} \\ $$$$ \\ $$

Commented by Calculusboy last updated on 11/Jan/24

thanks ma

$$\boldsymbol{{thanks}}\:\boldsymbol{{ma}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com