Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 202684 by ajfour last updated on 31/Dec/23

Answered by mr W last updated on 02/Jan/24

cos α=((s^2 +q^2 −((s/2))^2 )/(2sq))=((3s^2 +4q^2 )/(8sq))  cos β=(p/(2s))=((s−q)/(2s))=sin α  (((s−q)/(2s)))^2 +(((3s^2 +4q^2 )/(8sq)))^2 =1  32q^4 −32sq^3 −24s^2 q^2 +9s^4 =0  let λ=(q/s)  λ^4 −λ^3 −((3λ^2 )/4)+(9/(32))=0  ⇒λ≈0.5306, 1.4285 (>1, rejected)  (q/p)=(λ/(1−λ))≈((0.5306)/(1−0.5306))≈1.1304 ✓

$$\mathrm{cos}\:\alpha=\frac{{s}^{\mathrm{2}} +{q}^{\mathrm{2}} −\left(\frac{{s}}{\mathrm{2}}\right)^{\mathrm{2}} }{\mathrm{2}{sq}}=\frac{\mathrm{3}{s}^{\mathrm{2}} +\mathrm{4}{q}^{\mathrm{2}} }{\mathrm{8}{sq}} \\ $$$$\mathrm{cos}\:\beta=\frac{{p}}{\mathrm{2}{s}}=\frac{{s}−{q}}{\mathrm{2}{s}}=\mathrm{sin}\:\alpha \\ $$$$\left(\frac{{s}−{q}}{\mathrm{2}{s}}\right)^{\mathrm{2}} +\left(\frac{\mathrm{3}{s}^{\mathrm{2}} +\mathrm{4}{q}^{\mathrm{2}} }{\mathrm{8}{sq}}\right)^{\mathrm{2}} =\mathrm{1} \\ $$$$\mathrm{32}{q}^{\mathrm{4}} −\mathrm{32}{sq}^{\mathrm{3}} −\mathrm{24}{s}^{\mathrm{2}} {q}^{\mathrm{2}} +\mathrm{9}{s}^{\mathrm{4}} =\mathrm{0} \\ $$$${let}\:\lambda=\frac{{q}}{{s}} \\ $$$$\lambda^{\mathrm{4}} −\lambda^{\mathrm{3}} −\frac{\mathrm{3}\lambda^{\mathrm{2}} }{\mathrm{4}}+\frac{\mathrm{9}}{\mathrm{32}}=\mathrm{0} \\ $$$$\Rightarrow\lambda\approx\mathrm{0}.\mathrm{5306},\:\mathrm{1}.\mathrm{4285}\:\left(>\mathrm{1},\:{rejected}\right) \\ $$$$\frac{{q}}{{p}}=\frac{\lambda}{\mathrm{1}−\lambda}\approx\frac{\mathrm{0}.\mathrm{5306}}{\mathrm{1}−\mathrm{0}.\mathrm{5306}}\approx\mathrm{1}.\mathrm{1304}\:\checkmark \\ $$

Commented by mr W last updated on 01/Jan/24

Commented by ajfour last updated on 01/Jan/24

Thanks Sir! I have attached an  image corresponding to your   answer, than mine!

$${Thanks}\:{Sir}!\:{I}\:{have}\:{attached}\:{an} \\ $$$${image}\:{corresponding}\:{to}\:{your}\: \\ $$$${answer},\:{than}\:{mine}! \\ $$

Commented by mr W last updated on 01/Jan/24

Terms of Service

Privacy Policy

Contact: info@tinkutara.com