Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 202591 by Calculusboy last updated on 30/Dec/23

Answered by mr W last updated on 30/Dec/23

(dy/dx)+1+(y/x)=0  let y=xt  (dy/dx)=t+x(dt/dx)  t+x(dt/dx)+1+t=0  (dt/(2t+1))=−(dx/x)  ∫(dt/(2t+1))=−∫(dx/x)  (1/2)ln (2t+1)=−ln x+C_1   2t+1=(C^2 /x^2 )  ((2y)/x)+1=(C^2 /x^2 )  ⇒y=(1/2)((C^2 /x)−x)=((C^2 −x^2 )/(2x))

$$\frac{{dy}}{{dx}}+\mathrm{1}+\frac{{y}}{{x}}=\mathrm{0} \\ $$$${let}\:{y}={xt} \\ $$$$\frac{{dy}}{{dx}}={t}+{x}\frac{{dt}}{{dx}} \\ $$$${t}+{x}\frac{{dt}}{{dx}}+\mathrm{1}+{t}=\mathrm{0} \\ $$$$\frac{{dt}}{\mathrm{2}{t}+\mathrm{1}}=−\frac{{dx}}{{x}} \\ $$$$\int\frac{{dt}}{\mathrm{2}{t}+\mathrm{1}}=−\int\frac{{dx}}{{x}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\left(\mathrm{2}{t}+\mathrm{1}\right)=−\mathrm{ln}\:{x}+{C}_{\mathrm{1}} \\ $$$$\mathrm{2}{t}+\mathrm{1}=\frac{{C}^{\mathrm{2}} }{{x}^{\mathrm{2}} } \\ $$$$\frac{\mathrm{2}{y}}{{x}}+\mathrm{1}=\frac{{C}^{\mathrm{2}} }{{x}^{\mathrm{2}} } \\ $$$$\Rightarrow{y}=\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{{C}^{\mathrm{2}} }{{x}}−{x}\right)=\frac{{C}^{\mathrm{2}} −{x}^{\mathrm{2}} }{\mathrm{2}{x}} \\ $$

Commented by Calculusboy last updated on 30/Dec/23

thanks sir

$$\boldsymbol{{thanks}}\:\boldsymbol{{sir}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com