Question Number 202406 by mou0113 last updated on 26/Dec/23 | ||
Answered by witcher3 last updated on 26/Dec/23 | ||
$$\mathrm{f}\left(\mathrm{s}\right)=\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{t}^{\mathrm{s}} }{\left(\mathrm{1}+\mathrm{t}^{\mathrm{2}} \right)^{\mathrm{2}} }\mathrm{dt}\Rightarrow\mathrm{f}'\left(\mathrm{0}\right)=\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{ln}\left(\mathrm{x}\right)}{\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\mathrm{dx} \\ $$$$\mathrm{f}\left(\mathrm{s}\right)=\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{t}^{\frac{\mathrm{s}}{\mathrm{2}}} .\mathrm{t}^{−\frac{\mathrm{1}}{\mathrm{2}}} }{\left(\mathrm{1}+\mathrm{t}\right)^{\mathrm{2}} }\frac{\mathrm{dt}}{\mathrm{2}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{t}^{\frac{\mathrm{s}−\mathrm{1}}{\mathrm{2}}} }{\left(\mathrm{1}+\mathrm{t}\right)^{\mathrm{2}} }\mathrm{dt}=\frac{\mathrm{1}}{\mathrm{2}}\beta\left(\frac{\mathrm{s}+\mathrm{1}}{\mathrm{2}},\mathrm{2}−\frac{\mathrm{s}+\mathrm{1}}{\mathrm{2}}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}.\Gamma\left(\frac{\mathrm{s}+\mathrm{1}}{\mathrm{2}}\right)\Gamma\left(\mathrm{2}−\frac{\mathrm{s}+\mathrm{1}}{\mathrm{2}}\:\right)=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}−\frac{\mathrm{s}+\mathrm{1}}{\mathrm{2}}\right).\frac{\pi}{\mathrm{sin}\left(\frac{\pi}{\mathrm{2}}\left(\mathrm{s}+\mathrm{1}\right)\right.} \\ $$$$=\frac{\pi}{\mathrm{4}}.\frac{\mathrm{1}−\mathrm{s}}{\mathrm{cos}\left(\frac{\pi}{\mathrm{2}}\mathrm{s}\right)}=\mathrm{f}\left(\mathrm{s}\right) \\ $$$$\mathrm{f}'\left(\mathrm{0}\right)=\frac{\pi}{\mathrm{4}}\left(\frac{−\mathrm{1}}{\mathrm{1}}\right)=−\frac{\pi}{\mathrm{4}} \\ $$ | ||
Commented by mou0113 last updated on 26/Dec/23 | ||
$${thank}\:{you} \\ $$ | ||
Answered by Mathspace last updated on 26/Dec/23 | ||
$${I}=\int_{\mathrm{0}} ^{\infty} \frac{{lnx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx}\:\:\:\:\:\left({x}=\sqrt{{t}}\right) \\ $$$${I}=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} \:\frac{{lnt}}{\left(\mathrm{1}+{t}\right)^{\mathrm{2}} }\frac{{dt}}{\mathrm{2}\sqrt{{t}}} \\ $$$$\Rightarrow\mathrm{4}{I}=\int_{\mathrm{0}} ^{\infty} \frac{{t}^{−\frac{\mathrm{1}}{\mathrm{2}}} {lnt}}{\left(\mathrm{1}+{t}\right)^{\mathrm{2}} }{dt} \\ $$$${B}\left({x},{y}\right)=\int_{\mathrm{0}} ^{\infty} \frac{{t}^{{x}−\mathrm{1}} }{\left(\mathrm{1}+{t}\right)^{{x}+{y}} }{dt} \\ $$$$\frac{\partial{B}}{\partial{x}}\left({x},{y}\right)=\int_{\mathrm{0}} ^{\infty} \frac{{t}^{{x}−\mathrm{1}} {lnt}}{\left(\mathrm{1}+{t}\right)^{{x}+{y}} }{dt}\: \\ $$$${we}\:{take}\:{x}−\mathrm{1}=−\frac{\mathrm{1}}{\mathrm{2}}\:{and}\:{x}+{y}=\mathrm{2}\:\Rightarrow \\ $$$${x}=\frac{\mathrm{1}}{\mathrm{2}}\:{and}\:{y}=\frac{\mathrm{3}}{\mathrm{2}} \\ $$$${so}\mathrm{4}{I}=\frac{\partial{B}}{\partial{x}}\left(\frac{\mathrm{1}}{\mathrm{2}},\frac{\mathrm{3}}{\mathrm{2}}\right) \\ $$$${we}\:{have}\:{proved}\:{that} \\ $$$$\frac{\partial{B}}{\partial{x}}\left({x},{y}\right)={B}\left({x},{y}\right)\left\{\Psi\left({x}\right)−\Psi\left({x}+{y}\right)\right\} \\ $$$$\Rightarrow\mathrm{4}{I}={B}\left(\frac{\mathrm{1}}{\mathrm{2}},\frac{\mathrm{3}}{\mathrm{2}}\right)\left\{\Psi\left(\frac{\mathrm{1}}{\mathrm{2}}\right)−\Psi\left(\mathrm{2}\right)\right\} \\ $$$${B}\left(\frac{\mathrm{1}}{\mathrm{2}},\frac{\mathrm{3}}{\mathrm{2}}\right)=\frac{\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right).\Gamma\left(\frac{\mathrm{3}}{\mathrm{2}}\right)}{\Gamma\left(\mathrm{2}\right)} \\ $$$$=\frac{\sqrt{\pi}.\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\pi}}{\mathrm{1}!}=\frac{\pi}{\mathrm{2}} \\ $$$$\Psi\left({s}\right)=−\gamma+ \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}−{x}^{{s}−\mathrm{1}} }{\mathrm{1}−{x}}{dx} \\ $$$$\Rightarrow\Psi\left(\mathrm{2}\right)=−\gamma+\mathrm{1} \\ $$$$\Psi\left(\frac{\mathrm{1}}{\mathrm{2}}\right)=−\gamma+\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}−{x}^{−\frac{\mathrm{1}}{\mathrm{2}}} }{\mathrm{1}−{x}}{dx} \\ $$$${and} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}−\frac{\mathrm{1}}{\:\sqrt{{x}}}}{\mathrm{1}−{x}}{dx}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\sqrt{{x}}−\mathrm{1}}{\:\sqrt{{x}}\left(\mathrm{1}−\sqrt{{x}}\right)\left(\mathrm{1}+\sqrt{{x}}\right)}{dx} \\ $$$$=−\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{dx}}{\:\sqrt{{x}}\left(\mathrm{1}+\sqrt{{x}}\right)}{dx}\:\:\left(\sqrt{{x}}={t}\right) \\ $$$$=−\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{2}{tdt}}{{t}\left(\mathrm{1}+{t}\right)}=−\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{dt}}{\mathrm{1}+{t}} \\ $$$$=−\mathrm{2}{ln}\mathrm{2}\:\Rightarrow \\ $$$$\Psi\left(\frac{\mathrm{1}}{\mathrm{2}}\right)=−\gamma−\mathrm{2}{ln}\mathrm{2}\:\Rightarrow \\ $$$$\mathrm{4}{I}=\frac{\pi}{\mathrm{2}}\left\{−\gamma−\mathrm{2}{ln}\mathrm{2}+\gamma−\mathrm{1}\right\}\:\Rightarrow \\ $$$$\mathrm{4}{I}=−\pi{ln}\mathrm{2}−\frac{\pi}{\mathrm{2}}\:\Rightarrow \\ $$$${I}=−\frac{\pi{ln}\mathrm{2}}{\mathrm{4}}−\frac{\pi}{\mathrm{8}} \\ $$$$ \\ $$ | ||