Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 202127 by Calculusboy last updated on 21/Dec/23

Answered by qaz last updated on 21/Dec/23

∫_(π/6) ^(π/3) (dx/(1+tan^π  x))=∫_(π/6) ^(π/3) (dx/(1+cot^π x))=(1/2)∫_(π/6) ^(π/3) ((1/(1+tan^π  x))+(1/(1+cot^π x)))dx  =(1/2)∫_(π/6) ^(π/3) dx=(π/4)

$$\int_{\pi/\mathrm{6}} ^{\pi/\mathrm{3}} \frac{{dx}}{\mathrm{1}+\mathrm{tan}^{\pi} \:{x}}=\int_{\pi/\mathrm{6}} ^{\pi/\mathrm{3}} \frac{{dx}}{\mathrm{1}+\mathrm{cot}\:^{\pi} {x}}=\frac{\mathrm{1}}{\mathrm{2}}\int_{\pi/\mathrm{6}} ^{\pi/\mathrm{3}} \left(\frac{\mathrm{1}}{\mathrm{1}+\mathrm{tan}^{\pi} \:{x}}+\frac{\mathrm{1}}{\mathrm{1}+\mathrm{cot}\:^{\pi} {x}}\right){dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{\pi/\mathrm{6}} ^{\pi/\mathrm{3}} {dx}=\frac{\pi}{\mathrm{4}} \\ $$

Commented by Calculusboy last updated on 22/Dec/23

nice solution sir

$$\boldsymbol{{nice}}\:\boldsymbol{{solution}}\:\boldsymbol{{sir}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com