Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 202082 by Abduljalal last updated on 19/Dec/23

Answered by deleteduser1 last updated on 20/Dec/23

p^2 −p−2=0(p=x^3 )⇒p=2 or −1  ⇒x^3 =2 or x^3 =−1⇒x=(2)^(1/3) ;(2)^(1/3) e^((2iπ)/3) ,(2)^(1/3) e^((4πi)/3)   x=e^((πi)/3) ;−e^((2πi)/3) ;−1

$${p}^{\mathrm{2}} −{p}−\mathrm{2}=\mathrm{0}\left({p}={x}^{\mathrm{3}} \right)\Rightarrow{p}=\mathrm{2}\:{or}\:−\mathrm{1} \\ $$$$\Rightarrow{x}^{\mathrm{3}} =\mathrm{2}\:{or}\:{x}^{\mathrm{3}} =−\mathrm{1}\Rightarrow{x}=\sqrt[{\mathrm{3}}]{\mathrm{2}};\sqrt[{\mathrm{3}}]{\mathrm{2}}{e}^{\frac{\mathrm{2}{i}\pi}{\mathrm{3}}} ,\sqrt[{\mathrm{3}}]{\mathrm{2}}{e}^{\frac{\mathrm{4}\pi{i}}{\mathrm{3}}} \\ $$$${x}={e}^{\frac{\pi{i}}{\mathrm{3}}} ;−{e}^{\frac{\mathrm{2}\pi{i}}{\mathrm{3}}} ;−\mathrm{1} \\ $$

Answered by a.lgnaoui last updated on 20/Dec/23

x^3 (x^3 −1)=2   posons x^3 =X  X(X−1)=2  X^2 −X−2=0    X=((1±3)/2)  X= { ((−1)),((+2)) :}  ⇒ { ((x=(−1)^(1/3) ⇒ { ((x=−1)),((x={((1+i(√3))/2),((1−i(√3))/2))) :})),((x=2^(1/3) )) :}    S={−1,  ((1−i(√3))/2);  ((1+i(√3))/2);  ^3 (√2) }

$$\boldsymbol{\mathrm{x}}^{\mathrm{3}} \left(\boldsymbol{\mathrm{x}}^{\mathrm{3}} −\mathrm{1}\right)=\mathrm{2}\:\:\:\boldsymbol{\mathrm{posons}}\:\boldsymbol{\mathrm{x}}^{\mathrm{3}} =\boldsymbol{\mathrm{X}} \\ $$$$\boldsymbol{\mathrm{X}}\left(\boldsymbol{\mathrm{X}}−\mathrm{1}\right)=\mathrm{2} \\ $$$$\boldsymbol{\mathrm{X}}^{\mathrm{2}} −\boldsymbol{\mathrm{X}}−\mathrm{2}=\mathrm{0}\:\:\:\:\boldsymbol{\mathrm{X}}=\frac{\mathrm{1}\pm\mathrm{3}}{\mathrm{2}} \\ $$$$\boldsymbol{\mathrm{X}}=\begin{cases}{−\mathrm{1}}\\{+\mathrm{2}}\end{cases} \\ $$$$\Rightarrow\begin{cases}{\boldsymbol{\mathrm{x}}=\left(−\mathrm{1}\right)^{\mathrm{1}/\mathrm{3}} \Rightarrow\begin{cases}{\boldsymbol{\mathrm{x}}=−\mathrm{1}}\\{\boldsymbol{\mathrm{x}}=\left\{\frac{\mathrm{1}+\mathrm{i}\sqrt{\mathrm{3}}}{\mathrm{2}},\frac{\mathrm{1}−\mathrm{i}\sqrt{\mathrm{3}}}{\mathrm{2}}\right.}\end{cases}}\\{\boldsymbol{\mathrm{x}}=\mathrm{2}^{\mathrm{1}/\mathrm{3}} }\end{cases} \\ $$$$\:\:\boldsymbol{\mathrm{S}}=\left\{−\mathrm{1},\:\:\frac{\mathrm{1}−\mathrm{i}\sqrt{\mathrm{3}}}{\mathrm{2}};\:\:\frac{\mathrm{1}+\mathrm{i}\sqrt{\mathrm{3}}}{\mathrm{2}};\:\:\:^{\mathrm{3}} \sqrt{\mathrm{2}}\:\right\} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com