Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 201907 by mnjuly1970 last updated on 15/Dec/23

Answered by Rasheed.Sindhi last updated on 15/Dec/23

•Radius of Semi-circle R= ((10)/2)=5 cm  •let radous of greater quarter-circle=r_1   (R+r_1 )^2 =10^2 +5^2 =125  5+r_1 =5(√5)   r_1 =5(√5) −5=5((√5) −1)  •let r_2  is radius of smaller quarter circle    r_2 =10−5((√5) −1)=15−5(√5)   •Semi-circle-area=((π(5)^2 )/2)=((25π)/2)  •Greater-quarter-circle-area=((π( 5((√5) −1) )^2 )/4)  •Smaller-quarter-circle-area=((π( 15−5(√5)  )^2 )/4)  Blue-area=(Square-area)−(Semi-circle-area+Greater-quarter-circle-area+Smaller-quarter-circle-area)        =10^2 −( ((25π)/2)+((π( 5((√5) −1) )^2 )/4)+((π( 15−5(√5)  )^2 )/4))        =10^2 −( ((50)/4)+((( 5((√5) −1) )^2 )/4)+((( 15−5(√5)  )^2 )/4))π

$$\bullet{Radius}\:{of}\:{Semi}-{circle}\:{R}=\:\frac{\mathrm{10}}{\mathrm{2}}=\mathrm{5}\:{cm} \\ $$$$\bullet{let}\:{radous}\:{of}\:{greater}\:{quarter}-{circle}={r}_{\mathrm{1}} \\ $$$$\left({R}+{r}_{\mathrm{1}} \right)^{\mathrm{2}} =\mathrm{10}^{\mathrm{2}} +\mathrm{5}^{\mathrm{2}} =\mathrm{125} \\ $$$$\mathrm{5}+{r}_{\mathrm{1}} =\mathrm{5}\sqrt{\mathrm{5}}\: \\ $$$${r}_{\mathrm{1}} =\mathrm{5}\sqrt{\mathrm{5}}\:−\mathrm{5}=\mathrm{5}\left(\sqrt{\mathrm{5}}\:−\mathrm{1}\right) \\ $$$$\bullet{let}\:{r}_{\mathrm{2}} \:{is}\:{radius}\:{of}\:{smaller}\:{quarter}\:{circle} \\ $$$$\:\:{r}_{\mathrm{2}} =\mathrm{10}−\mathrm{5}\left(\sqrt{\mathrm{5}}\:−\mathrm{1}\right)=\mathrm{15}−\mathrm{5}\sqrt{\mathrm{5}}\: \\ $$$$\bullet{Semi}-{circle}-{area}=\frac{\pi\left(\mathrm{5}\right)^{\mathrm{2}} }{\mathrm{2}}=\frac{\mathrm{25}\pi}{\mathrm{2}} \\ $$$$\bullet{Greater}-{quarter}-{circle}-{area}=\frac{\pi\left(\:\mathrm{5}\left(\sqrt{\mathrm{5}}\:−\mathrm{1}\right)\:\right)^{\mathrm{2}} }{\mathrm{4}} \\ $$$$\bullet{Smaller}-{quarter}-{circle}-{area}=\frac{\pi\left(\:\mathrm{15}−\mathrm{5}\sqrt{\mathrm{5}}\:\:\right)^{\mathrm{2}} }{\mathrm{4}} \\ $$$${Blue}-{area}=\left({Square}-{area}\right)−\left({Semi}-{circle}-{area}+{Greater}-{quarter}-{circle}-{area}+{Smaller}-{quarter}-{circle}-{area}\right) \\ $$$$\:\:\:\:\:\:=\mathrm{10}^{\mathrm{2}} −\left(\:\frac{\mathrm{25}\pi}{\mathrm{2}}+\frac{\pi\left(\:\mathrm{5}\left(\sqrt{\mathrm{5}}\:−\mathrm{1}\right)\:\right)^{\mathrm{2}} }{\mathrm{4}}+\frac{\pi\left(\:\mathrm{15}−\mathrm{5}\sqrt{\mathrm{5}}\:\:\right)^{\mathrm{2}} }{\mathrm{4}}\right) \\ $$$$\:\:\:\:\:\:=\mathrm{10}^{\mathrm{2}} −\left(\:\frac{\mathrm{50}}{\mathrm{4}}+\frac{\left(\:\mathrm{5}\left(\sqrt{\mathrm{5}}\:−\mathrm{1}\right)\:\right)^{\mathrm{2}} }{\mathrm{4}}+\frac{\left(\:\mathrm{15}−\mathrm{5}\sqrt{\mathrm{5}}\:\:\right)^{\mathrm{2}} }{\mathrm{4}}\right)\pi \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com