Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 201906 by sonukgindia last updated on 15/Dec/23

Answered by deleteduser1 last updated on 15/Dec/23

sin(x)=(s/h)...(i)  (ii)...((sin(2x))/h)=((sin(x))/(2s))⇒2sin(x)=((sin(x))/(sin(2x)))  ⇒sin(2x)=(1/2)⇒x=15°

$${sin}\left({x}\right)=\frac{{s}}{{h}}...\left({i}\right) \\ $$$$\left({ii}\right)...\frac{{sin}\left(\mathrm{2}{x}\right)}{{h}}=\frac{{sin}\left({x}\right)}{\mathrm{2}{s}}\Rightarrow\mathrm{2}{sin}\left({x}\right)=\frac{{sin}\left({x}\right)}{{sin}\left(\mathrm{2}{x}\right)} \\ $$$$\Rightarrow{sin}\left(\mathrm{2}{x}\right)=\frac{\mathrm{1}}{\mathrm{2}}\Rightarrow{x}=\mathrm{15}° \\ $$

Answered by mr W last updated on 16/Dec/23

Commented by mr W last updated on 16/Dec/23

AB=BC=2×BE  sin 2α=((BE)/(AB))=(1/2)  ⇒2α=30° ⇒α=15°

$${AB}={BC}=\mathrm{2}×{BE} \\ $$$$\mathrm{sin}\:\mathrm{2}\alpha=\frac{{BE}}{{AB}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{2}\alpha=\mathrm{30}°\:\Rightarrow\alpha=\mathrm{15}° \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com