Question and Answers Forum

All Questions      Topic List

Vector Questions

Previous in All Question      Next in All Question      

Previous in Vector      Next in Vector      

Question Number 201526 by 281981 last updated on 08/Dec/23

Answered by deleteduser1 last updated on 08/Dec/23

WLOG,let O be the origin; g=((a+b+c)/3)  ∣o−a∣=∣o−b∣=∣o−c∣=R  ⇒(o−a)(o^− −a^− )=R^2 ⇒aa^− =R^2 ⇒a^− =(R^2 /a)  Then ∣OG∣^2 =(g−o)(g^− −o^− )=gg^−   =(((a+b+c)/3))(((R^2 ((1/a)+(1/b)+(1/c)))/3))=((R^2 (a+b+c)(ab+bc+ca))/(9abc))  ∣b−a∣^2 +∣b−c∣^2 +∣c−a∣^2   =R^2 (b−a)(((a−b)/(ab)))+R^2 (b−c)(((c−b)/(bc)))+R^2 (c−a)(((a−c)/(ac)))  =(R^2 /(abc))[c(b−a)(a−b)+a(b−c)(c−b)+b(c−a)(a−c)]  =(r^2 /(abc))[{−3abc+3abc−a^2 c−b^2 c−ab^2 −c^2 a+(abc−a^2 b)−c^2 b+6abc]  =((−R^2 )/(abc))[a^2 b+abc+a^2 c+ab^2 +b^2 c+abc+abc+bc^2 +c^2 a−9abc]  =((−r^2 (a+b+c)(ab+bc+ca))/(abc))+9r^2   ⇒∣BA∣^2 +∣AC∣^2 +∣CB∣^2 =−9∣OG∣^2 +9R^2   ⇒3)

$${WLOG},{let}\:{O}\:{be}\:{the}\:{origin};\:{g}=\frac{{a}+{b}+{c}}{\mathrm{3}} \\ $$$$\mid{o}−{a}\mid=\mid{o}−{b}\mid=\mid{o}−{c}\mid={R} \\ $$$$\Rightarrow\left({o}−{a}\right)\left(\overset{−} {{o}}−\overset{−} {{a}}\right)={R}^{\mathrm{2}} \Rightarrow{a}\overset{−} {{a}}={R}^{\mathrm{2}} \Rightarrow\overset{−} {{a}}=\frac{{R}^{\mathrm{2}} }{{a}} \\ $$$${Then}\:\mid{OG}\mid^{\mathrm{2}} =\left({g}−{o}\right)\left(\overset{−} {{g}}−\overset{−} {{o}}\right)={g}\overset{−} {{g}} \\ $$$$=\left(\frac{{a}+{b}+{c}}{\mathrm{3}}\right)\left(\frac{{R}^{\mathrm{2}} \left(\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}+\frac{\mathrm{1}}{{c}}\right)}{\mathrm{3}}\right)=\frac{{R}^{\mathrm{2}} \left({a}+{b}+{c}\right)\left({ab}+{bc}+{ca}\right)}{\mathrm{9}{abc}} \\ $$$$\mid{b}−{a}\mid^{\mathrm{2}} +\mid{b}−{c}\mid^{\mathrm{2}} +\mid{c}−{a}\mid^{\mathrm{2}} \\ $$$$={R}^{\mathrm{2}} \left({b}−{a}\right)\left(\frac{{a}−{b}}{{ab}}\right)+{R}^{\mathrm{2}} \left({b}−{c}\right)\left(\frac{{c}−{b}}{{bc}}\right)+{R}^{\mathrm{2}} \left({c}−{a}\right)\left(\frac{{a}−{c}}{{ac}}\right) \\ $$$$=\frac{{R}^{\mathrm{2}} }{{abc}}\left[{c}\left({b}−{a}\right)\left({a}−{b}\right)+{a}\left({b}−{c}\right)\left({c}−{b}\right)+{b}\left({c}−{a}\right)\left({a}−{c}\right)\right] \\ $$$$=\frac{{r}^{\mathrm{2}} }{{abc}}\left[\left\{−\mathrm{3}{abc}+\mathrm{3}{abc}−{a}^{\mathrm{2}} {c}−{b}^{\mathrm{2}} {c}−{ab}^{\mathrm{2}} −{c}^{\mathrm{2}} {a}+\left({abc}−{a}^{\mathrm{2}} {b}\right)−{c}^{\mathrm{2}} {b}+\mathrm{6}{abc}\right]\right. \\ $$$$=\frac{−{R}^{\mathrm{2}} }{{abc}}\left[{a}^{\mathrm{2}} {b}+{abc}+{a}^{\mathrm{2}} {c}+{ab}^{\mathrm{2}} +{b}^{\mathrm{2}} {c}+{abc}+{abc}+{bc}^{\mathrm{2}} +{c}^{\mathrm{2}} {a}−\mathrm{9}{abc}\right] \\ $$$$=\frac{−{r}^{\mathrm{2}} \left({a}+{b}+{c}\right)\left({ab}+{bc}+{ca}\right)}{{abc}}+\mathrm{9}{r}^{\mathrm{2}} \\ $$$$\Rightarrow\mid{BA}\mid^{\mathrm{2}} +\mid{AC}\mid^{\mathrm{2}} +\mid{CB}\mid^{\mathrm{2}} =−\mathrm{9}\mid{OG}\mid^{\mathrm{2}} +\mathrm{9}{R}^{\mathrm{2}} \\ $$$$\left.\Rightarrow\mathrm{3}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com