Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 201325 by sonukgindia last updated on 04/Dec/23

Commented by mr W last updated on 05/Dec/23

do you have the right answer?

$${do}\:{you}\:{have}\:{the}\:{right}\:{answer}? \\ $$

Answered by mr W last updated on 04/Dec/23

Commented by mr W last updated on 04/Dec/23

R=radius of big quarter circle  r=radius of small semi  circle  OB=(R/2)  AB=(((√3)R)/2)  BC=(√((2r)^2 −((((√3)R)/2))^2 ))  CO=(R/2)−(√((2r)^2 −((((√3)R)/2))^2 ))  EF=r−(R/2)+(√((2r)^2 −((((√3)R)/2))^2 ))=((BC)/2)  2((R/2)−r)=(√((2r)^2 −((((√3)R)/2))^2 ))  4((R^2 /4)−Rr+r^2 )=4r^2 −((3R^2 )/4)  ⇒r=((7R)/(16))  ((semi)/(quarter))=((πr^2 )/2)×(4/(πR^2 ))=2((r/R))^2   =2((7/(16)))^2 =((49)/(128))≈38.2%

$${R}={radius}\:{of}\:{big}\:{quarter}\:{circle} \\ $$$${r}={radius}\:{of}\:{small}\:{semi}\:\:{circle} \\ $$$${OB}=\frac{{R}}{\mathrm{2}} \\ $$$${AB}=\frac{\sqrt{\mathrm{3}}{R}}{\mathrm{2}} \\ $$$${BC}=\sqrt{\left(\mathrm{2}{r}\right)^{\mathrm{2}} −\left(\frac{\sqrt{\mathrm{3}}{R}}{\mathrm{2}}\right)^{\mathrm{2}} } \\ $$$${CO}=\frac{{R}}{\mathrm{2}}−\sqrt{\left(\mathrm{2}{r}\right)^{\mathrm{2}} −\left(\frac{\sqrt{\mathrm{3}}{R}}{\mathrm{2}}\right)^{\mathrm{2}} } \\ $$$${EF}={r}−\frac{{R}}{\mathrm{2}}+\sqrt{\left(\mathrm{2}{r}\right)^{\mathrm{2}} −\left(\frac{\sqrt{\mathrm{3}}{R}}{\mathrm{2}}\right)^{\mathrm{2}} }=\frac{{BC}}{\mathrm{2}} \\ $$$$\mathrm{2}\left(\frac{{R}}{\mathrm{2}}−{r}\right)=\sqrt{\left(\mathrm{2}{r}\right)^{\mathrm{2}} −\left(\frac{\sqrt{\mathrm{3}}{R}}{\mathrm{2}}\right)^{\mathrm{2}} } \\ $$$$\mathrm{4}\left(\frac{{R}^{\mathrm{2}} }{\mathrm{4}}−{Rr}+{r}^{\mathrm{2}} \right)=\mathrm{4}{r}^{\mathrm{2}} −\frac{\mathrm{3}{R}^{\mathrm{2}} }{\mathrm{4}} \\ $$$$\Rightarrow{r}=\frac{\mathrm{7}{R}}{\mathrm{16}} \\ $$$$\frac{{semi}}{{quarter}}=\frac{\pi{r}^{\mathrm{2}} }{\mathrm{2}}×\frac{\mathrm{4}}{\pi{R}^{\mathrm{2}} }=\mathrm{2}\left(\frac{{r}}{{R}}\right)^{\mathrm{2}} \\ $$$$=\mathrm{2}\left(\frac{\mathrm{7}}{\mathrm{16}}\right)^{\mathrm{2}} =\frac{\mathrm{49}}{\mathrm{128}}\approx\mathrm{38}.\mathrm{2\%} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com